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Abstract
The common way to deal with outliers in empirical Economics and Finance is to

delete them, either by trimming or winsorizing, or by computing statistics robust to

outliers. However, due to their importance, there are situations where the exclusion

of these observations is not reasonable and may even be counterproductive. For

example, should we exclude the very high stock prices of Amazon and Google from

an empirical analysis? Even if the purpose is to compute an average of tech stock

prices, does it make economic and financial sense? Maybe not. A solution that

would keep the two companies in the data set and yet not penalize the higher

observations as much as the median, harmonic and geometric averages, might—

were such a solution to be available—constitute an attractive alternative. In this

paper we propose and analyze a modified measure, the adjusted median, where the

influence of the outlying observations, while not as high as in the arithmetic average

would, however, give more weight to the outlying observations than the median,

harmonic and geometric averages. Monte Carlo simulations and bootstrapping real

financial data confirm how useful the adjusted median could be.
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1 Introduction

The traditional ways to deal with outlying observations in empirical Economics and

Finance is to exclude them (by trimming or winsorizing), or by computing statistics

robust to outliers: the median and inter-quartile range, for example. Due to their

importance, however, there are situations where the exclusion of the observations is

not reasonable and may even be counterproductive. Suppose that we compute the

average of stock prices of companies listed in the ‘‘Information Technology’’ sector

of Standard and Poor’s 500 (S&P 500), including Amazon, Google, Microsoft and

Apple, among many others. As the stock prices of Amazon and Google are much

higher in comparison to the others, would it make sense to exclude these two

companies from the analysis or should we give them a very low weight to compute

the average? In economic terms, maybe neither of these options seems a reasonable

decision because Amazon and Google are third and fifth in the list of the 10 largest

components of the S&P 500. An alternative way would be to keep the two

companies in the data set and to compute a measure that does not penalize the

higher observations as much as the median, harmonic and geometric averages. The

adjusted median, the measure proposed in this paper, meets that purpose because

while the influence of higher data points is not as high as in the arithmetic average,

it nevertheless gives more weight to the higher observations than the median and the

other two averages.

The role of an average is to represent a data set meaningfully, and the decision to

choose the appropriate average to represent the central tendency of a distribution is

an old and yet highly topical matter, in view of what was written by Coggeshall a

long time ago (1886, p. 84). His contention was that the mean commonly employed

by the economist is not a real quantity at all, but is a quantity assumed as the

representative number of others that differ from it to a greater or lesser extent. Its

fictitious character renders it possible to choose from among different values, and

thus among different methods of finding it. Even in terms of mental images, the

word average can lead to different meanings, reinforcing the doubts when we think

on it (Kaplan et al. 2010). When asked to compute an average,1 many practitioners

assume the arithmetic mean is what is called for. However, and very often, they are

not aware that better alternative approaches are available to capture the central

tendency of a distribution (Coggeshall 1886), namely the geometric and harmonic

means. Knowing which one to use for your data means understanding their

differences. For example, in the case of ratios the choice of averaging method does

matter, and sometimes the much less familiar harmonic mean provides a more

logical approach to averaging the ratio between two magnitudes (Agrrawal et al.

2010). For square contingency tables, Nakagawa et al. (2020) proposes, as an

alternative to the weighted arithmetic mean to represent the degree of departure

from the marginal homogeneity, a measure which is expressed as a weighted

geometric mean of the diversity index.

The averages, and the central tendency measures in general, continue to be used

in most of scientific fields. In Economics and Finance, e.g., Gan et al. (2020),

1 We use ‘‘average’’ or ‘‘mean’’ interchangeably.
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Wellalage and Fernandez (2019) and Cheuk and Vorst (1999). In Education, e.g.,

Assari et al. (2020). In Mathematics, Statistics and Econometrics, e.g., Maki and

Ota (2020), Kolahdouz et al. (2020), Priam (2020), del Barrio et al. (2019) and Gou

et al. (2019). In Climate Change, e.g., Lyu et al. (2020). In Complexity Systems,

e.g., Wu et al. (2020). In Psychology, e.g., Wenzel and Kubiak (2020). In Logistics,

e.g., Choi et al. (2019), just to mention a few. In view of their importance, the main

purpose of this paper is to clarify differences regarding averaging methods. The

contribution we make is fivefold. First, we show in Sect. 2 that the harmonic mean is

equivalent to a weighted arithmetic average, where the weights are inversely

proportional to the original values, and they are computed in such a way that the

contribution of each value to the final average is exactly the same. Thus, the weights

compensate the original values to make the contribution of each value equal to the

final average. We also generalize the new formula, taking the harmonic and

arithmetic averages as particular cases.

Second, different central tendency measures give different interpretations of the

center of a distribution. In Sect. 2.2 we show that the median is the center of the

distribution in terms of the observations counted, no matter the value of the

observations. The arithmetic mean is such that the absolute deviations to the right of

it are compensated by the absolute deviations on its left. So, the center is defined in

terms of the absolute deviations (or distances) between each value and the

arithmetic average. The geometric average defines the center of the distribution in

terms of the compounding relative (percentage) deviations. The negative deviations

in relative terms are balanced by the positive ones. Finally, the harmonic mean

defines the center of the distribution in order that the weighted deviations on its left

compensate the weighted deviations on its right, and the weights are inversely

proportional to the original values.

Third, the traditional central tendency measures do not properly handle outlying

observation. The arithmetic average is dominated by outlying observations. The

insensitivity of the geometric and harmonic averages to outliers can obscure large

values that may be consequential. Finally, the median does not use all available data

and can be misleading with regard to distributions with a long tail because it

discards so much information. Due to the drawbacks of traditional measures, we

propose a modified one—the adjusted median—in Sect. 3. The adjusted median

originates an intermediate value between the median and the arithmetic average,

giving more weight to the higher observations than the median and the other two

averages. However, the contribution of each value to the final result is not exactly

the same as in the harmonic average. Monte Carlo simulation shows the

intermediate position of the adjusted median. We also propose a simple measure

of skewness, taking the median as the reference.

Fourth, to compute and compare the measures based on real economic data, we

use the daily stock price of 56 companies listed in the ‘‘Information Technology’’

sector of the S&P 500. The data set includes Amazon, Google, Microsoft and Apple,

among many others. We show that the adjusted median represents the center of the

daily stock price distribution without excluding or giving a very low weight to the

outlying observations. Finally, we provide the R code to perform the calculations

arising in this study.
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The outline of the paper is as follows. First, we review the traditional averaging

methods suggested in statistics textbooks, and used by academic researchers and

practitioners. We also discuss some particularities of the means leading to a better

interpretation and understanding. A new measure, the adjusted median, is proposed

in Sect. 3. Monte Carlo simulation studies are performed in Sect. 4 to show the

location of this measure and a real data example is also considered in Sect. 5.

Finally, we present our concluding remarks.

2 Revisiting the Central Tendency Measures

The classic methods of averaging data are the three Pythagorean means: the familiar

arithmetic mean, the geometric mean (the nth root of the product of the numbers)

and the harmonic mean (the reciprocal of the arithmetic mean of the reciprocals of

the numbers).

The arithmetic mean, or simply the mean or average, is the sum of all the X
values divided by the number of observations (n):

�XA ¼ 1

n

Xn

i¼1

xi ¼
Pn

i¼1 xi
n

; i ¼ 1; 2; . . .; n; ð1Þ

where xi represents the different values assumed by the X variable. See, for example,

Chen (1995) for statistical inference about the arithmetic average in the case of

positively skewed distributions.

The geometric mean is another type of average, pointing to the central tendency

of a set of numbers, and is defined as the root of order n of the product of values xi:

�XG ¼
ffiffiffiffiffiffiffiffiffiffiffi
Yn

i¼1

xi
n

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2 � . . .� xnn

p
¼ x1 � . . .� xnð Þ

1
n; ð2Þ

where the capital letter P represents a series of multiplications (or products). As

Galton (1897) suggested in one of the earliest papers on geometric average, the

distribution of �XG will approach normality as n increases, for all parent distributions

to which the central limit theorem applies. Thus, the distribution of �XG will

approach the log-normal form, even though the parent distribution of X may not be

log-normal (Alf and Grossberg 1979). The geometric mean applies only to numbers

of the same sign in order to avoid the nth root of a negative number when n is even,

which is not defined in the real numbers set. In general only positive numbers are

allowed (Excel, for example).

Let 1
x1
; 1
x2
; . . .; 1

xn
be the reciprocals of the given set of observations. The equally

weighted harmonic mean is expressed as the reciprocal of the arithmetic mean of the

reciprocals:
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�XH ¼
Pn

i¼1
1
xi

n

 !�1

¼ nPn
i¼1

1
xi

: ð3Þ

If different weights d1; d2; . . .; dn are assigned to the xi observations, the weighted

harmonic mean is defined by:

�XH ¼
Pn

i¼1 diPn
i¼1

di
xi

: ð4Þ

The relation between the three means is: �XH � �XG � �XA (for strictly positive values).

Thus, the arithmetic average is the largest one.2

What we propose in this paper is a measure between the arithmetic average and

the median that better accommodates the outlying observations (see Sect. 3).

2.1 Contributions to the Final Average

As

�XH ¼
Xn

i¼1

xi
wiPn
i¼1 wi

¼ nPn
i¼1

1
xi

; ð5Þ

where wi ¼
Pn

i¼1
xi

xi
, the harmonic mean is equivalent to a weighted arithmetic

average, where the weights are inversely proportional to the original values and are

computed in such a way that the contribution of each value ðxiÞ to the final average

is exactly the same3:

x1
w1Pn
i¼1 wi

¼ x2
w2Pn
i¼1 wi

¼ � � � ¼ xi
wiPn
i¼1 wi|fflfflfflffl{zfflfflfflffl}
pi

¼ � � � ¼ xn
wnPn
i¼1 wi

¼ 1Pn
i¼1

1
xi

:
ð6Þ

If xm is the minimum value and its (highest) weight is pm, the weight (smaller) of the

other values xi is given by pi ¼ xm
xi
pm: the weight is inversely proportional to the

values, where the constant contribution of each value to the harmonic average is

given by k ¼ xi � pi.
Thus, all data points, in spite of their value, make the same contribution to the

harmonic average, giving more weight to the smallest observations in the data set.

However, due to its insensitivity to outliers, the harmonic mean (like the geometric

mean, as we will see next) can obscure large values that may be consequential.

To compute the harmonic mean by Eq. (5) we can use the R function whose code

is presented as follows:

HarmonicMean\- function(x){
weigs1 = sum(x)/x

2 See ‘‘Appendix B’’ for demonstration.
3 See ‘‘Appendix A’’ for demonstrations.
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weigs = weigs1/sum(weigs1)
HarmonicMean\- t(x)% � %weigs
return(HarmonicMean)}

To compute the harmonic mean by using the standard formula we can use the R

function:

hm_mean\- function(a){length(a)/(sum(1/a))}

Equation (5) can be generalized to:

�XGA ¼
Xn

i¼1

xi
wk
iPn

i¼1 w
k
i

; ð7Þ

where k is a real number. If k ¼ 1, �XGA is the harmonic average; if k ¼ 0, �XGA is the

arithmetic average. The geometric average is obtained for a particular value of k in
the range 0\k\1, which is not always constant.

In the (simple) arithmetic average what is constant is the weight associated with

each data point:

�XA ¼
Xn

i¼1

1

n
xi ¼

1

n
x1 þ

1

n
x2 þ . . .þ 1

n
xn: ð8Þ

Therefore, if the values are different, the contribution of each ðci ¼ 1
n xiÞ to the

arithmetic average is not constant and higher values will make a greater contribu-

tion, which is directly proportional to the value; this is the reason why the arithmetic

average is influenced by outlying observations (Lyu et al. 2020). The constant of

proportionality is k ¼ ci
xi
and ci ¼ kxi ¼ 1

n xi.

The simplest way to reduce the importance of extreme points is to use the

harmonic or geometric averages as an alternative to the arithmetic average when the

data set includes outlying observations. The geometric average is the root of order n
of the product of xi’s and the contribution of each value to the geometric average is

neither constant nor directly proportional to the respective value.

By taking the natural log of both sides of Eq. (2) we get:

ln �XGð Þ ¼ 1

n

Xn

i¼1

lnðxiÞ ¼
1

n
lnðx1Þ þ

1

n
lnðx2Þ þ � � � þ 1

n
lnðxnÞ: ð9Þ

By taking the anti-logarithm of both sides:

�XG ¼ exp
1

n

Xn

i¼1

lnðxiÞ
" #

¼ x
1
n

1x
1
n

2 � � � x
1
n
n: ð10Þ

The R code of two functions to compute the geometric mean is:

gm_mean\- function(a){ prod(a)^(1/length(a)) }or
gm_meanlog\- function(a){
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len\- length(a)
gm_meanlog\- exp(1/len � sum(log(a)))
return(gm_meanlog) }

Based on Jensen inequality,4 we conclude that the value of the arithmetic average

is at least the value of the geometric average: �XA � �XG (where the equality holds

only if all the xi are equal). The contribution of each data point to the geometric

average is less than proportional to the xi values, reducing the impact of outlying

observations on the final value. Thus, the contribution of each data point to the

geometric average is neither constant, as in the harmonic mean, nor directly

proportional to the values, as in the arithmetic average, resulting in an intermediate

value between harmonic and arithmetic averages.

2.2 Different Meanings of the Center

Choosing the appropriate mean to represent the central tendency of a distribution is

an old and yet highly topical matter, in view of what was written by Coggeshall a

long time ago (1886, p. 84) where he stated that the mean commonly employed by

the economist is not a real quantity at all, but is a quantity assumed as the

representative number of others that more or less differ from it. Its fictitious

character renders it possible to choose from among different values, and thus among

different methods of finding it. The same conclusion holds for the median when the

number of observations is even.

Let us consider first the median to represent the central tendency of a distribution.

By ranking the observations from the lowest to the highest, the ranks associated

with each observation are: r1; r2; . . .; rn where r1 and rn represent the minimum and

the maximum, respectively. The median �XMð Þ corresponds to the middle point in

terms of counted observations (absolute frequencies) in spite of the respective value:

rM ¼ r1þrn
2

and the following property holds for the median:

Xn

i¼1

ri � rMð Þ ¼ 0; ð11Þ

where ri represents the ranks of ordered observations and rM is the rank corre-

sponding to the median. The sum of the differences between the ranks, and the rank

corresponding to the median, is zero.

The arithmetic average �XAð Þ defines the center of the distribution in terms of the

observations’ value:

Xn

i¼1

xi � �XAð Þ ¼ 0; ð12Þ

where xi represents the value of each observation in the data set.

4 See ‘‘Appendix B’’ for demonstrations.
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The geometric average �XGð Þ defines the center of the distribution in terms of the

log percentage deviations (Trönqvist et al. 1985) around �XG and the next property

holds for this average:

Xn

i¼1

ln
xi
�XG

� �
¼ 0; ð13Þ

or the sum of the differences between the log of xi and the log of the geometric

average is zero:

Xn

i¼1

ln xið Þ � ln �XGð Þ½ � ¼ 0; ð14Þ

where ln xið Þ � ln �XGð Þ, when multiplied by 100, is the log percentage deviation

between each observation and the geometric average. Thus, the geometric average is

the value that balances the negative log percentage deviations with the positive

ones.

The harmonic average �XHð Þ defines the center of the distribution in terms of the

absolute deviations weighted by wiPn

i¼1
wi
(see Eq. (5)):

Xn

i¼1

xi � �XHð Þ wiPn
i¼1 wi

¼ 0: ð15Þ

Thus, the harmonic mean defines the center of the distribution such that the

weighted deviations on its left compensate the weighted deviations on its right. The

weights are inversely proportional to the original values.5

Between the median, harmonic, geometric and arithmetic averages, which

measure should be used to represent the central tendency of a distribution? We very

often use the arithmetic mean and the median, occasionally the geometric mean, and

very rarely the harmonic mean. However, there is nothing to actually prevent us

from using whatever measure we would like; we have to choose the one most

suitable for each particular situation.

For a sequence of independent (non-outlying) observations, the arithmetic mean

is the preferred measure to represent the central tendency because all the available

data is used to compute the respective value, while to the median contributes only

half of the data. This is the case, for example, with regard to the financial incomes of

different companies. If a company happens to perform poorly, the chance of other

companies doing better isn’t affected. In general, statisticians use arithmetic means

to represent independent data with no significant outliers. However, when it comes

to annual investment returns, the numbers are not independent from each other. If

you lose a ton of money one year, you have much less capital to generate returns

during the following years. So, we cannot say that yearly returns are independent,

and the geometric average is more suitable to represent the center. Thus, the

geometric mean is more appropriate for data series that exhibit serial correlation.

5 See ‘‘Appendix C’’ for simple applications of the results of this subsection.
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When at least one of the observations is zero the arithmetic mean is still more

appropriate to average the observations because the geometric mean is zero and the

harmonic mean cannot be computed as the reciprocals of the original values are

undefined.

In the presence of outlying observations, the harmonic mean of a list of numbers

tends strongly toward the smaller elements of the list; it tends (compared to the

arithmetic mean) to mitigate the impact of large outliers and to aggravate the impact

of the smallest ones. When you look at the results of arithmetic and geometric

means calculations, we notice that the effect of outliers is greatly dampened in the

geometric mean.

As the arithmetic average is not a robust statistic, meaning that it is influenced by

extreme observations, and the harmonic and geometric averages tend to mitigate the

impact of large observations, the median is used more often to represent the central

tendency because it is robust towards outlying observations. However, the median is

computed based on the ranks and not on the value of the observations. Thus, in the

next section we propose a new measure that incorporates all data values in its

calculation and which, compared to traditional measures, provides an alternative

description of the central tendency when there are outlying observations.

3 The Adjusted Median

We have already pointed out the drawbacks of the three averages. The arithmetic

average is dominated by outlying observations (Matthews 2004). And the

insensitivity of the geometric and harmonic averages to outliers can obscure large

values that may be consequential. The median does not use all the available data and

can be misleading in distributions with a long tail because it discards so much

information.

Due to the drawbacks of traditional central tendency measures in the presence of

outlying observations, we propose the adjusted Median: �XaM (aMED), for its

capacity to provide an intermediate value able to take into account the extreme

observations, between the lowest (harmonic, geometric and median) and the highest

(arithmetic) averages. Let SL and SR be the sum of xi deviations to the left and to the

right of the median:

SL ¼
Xn1

xi\ �XM

�XM � xið Þ and SR ¼
Xn2

xi [ �XM

xi � �XMð Þ: ð16Þ

The adjusted Median ð �XaMÞ is defined as:

�XaM ¼ �XM þ SR � SL
SR þ SL|fflfflfflffl{zfflfflfflffl}

sk

�XA � �XMj j; ð17Þ

where �XM\ �XaM\ �XA, when the distribution is asymmetric positive and the arith-

metic average is higher than the median: �XA [ �XM; �XA\ �XaM\ �XM , when the
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distribution is asymmetric negative and the arithmetic average is lower than the

median: �XA\ �XM . If the distribution is symmetric, SR ¼ SL and �XaM ¼ �XM ¼ �XA.

The ratio

sk ¼ SR � SL
SR þ SL

ð18Þ

can also be used as a simple measure of skewness (taking the median as the ref-

erence) pointing to an asymmetric positive, asymmetric negative or symmetric

distribution, when its value is positive, negative or zero, respectively. The advantage

of this measure is that it always ranges between �1 and þ1.

Thus, the adjusted median causes the median to shift towards the arithmetic

average and its location depends on the balance between the two sides of the median

(not in terms of frequencies, but in terms of values, represented by the sums SL and

SR). This formula uses a linear interpolation to estimate the adjusted median and it

follows the usual method to calculate the mode in continuous grouped data (Basu

and DasGupta 1997). �XaM originates an intermediate6 value between the median and

arithmetic average, bringing more weight to the extreme observations, when

compared to the median, harmonic and geometric averages, and less weight when

compared to the arithmetic average. Thus, outlying observations are still influential

in the final result, but not as much as in the arithmetic average.

The code of the R function to compute the adjusted median is shown as follows:

adj_median\- function(x){
med1\- median(x)
sumleft\- sum(med1-x[x\med1])
sumright\- sum(x[x[med1]-med1)
tot\- sumleft ? sumright
sk\- (sumright-sumleft)/tot
diff1\- abs(mean(x)-median(x))
diff2\- sk �diff1
if(mean(x)\median(x)) {
aMED\- median(x)-diff2 } else {
aMED\- median(x)?diff2 }
return(list(aMED,sk)) }

The adjusted median ð �XaMÞ does not penalize the higher data points as much as

the median, harmonic and geometric means, and it gives less weight to those

observations, when compared to the arithmetic average. Thus, in the harmonic and

geometric averages (especially the first) the higher data points are penalized

excessively, and the resulting mean is too small to represent the outlying

observations. On the other hand, the arithmetic average exacerbates the effect of

those observations, giving rise to a mean that is generally too high (or too low). An

adjusted median, therefore, can be an attractive way to deal with outlying

observations: these values still contribute to �XaM , but the weight is lower when

6 See Sect. 4 for details.
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compared to the arithmetic average and higher when compared to the median,

harmonic and geometric means.

What are the differences of the adjusted median when compared to the traditional

means and median? The adjusted median provides that higher observations remain

in the data set without giving as much weight as in the arithmetic average, or too

small a weight as in the other three central tendency measures. Thus, it is an

alternative way to deal with outlying observations. Furthermore, there are no

constraints to computing the adjusted median even in the context of variables that

can take non-positive values, which is a shortcoming of geometric and harmonic

averages, as previously pointed out.

4 Simulation Study

A simulation study was conducted to confirm the intermediate position of the

adjusted median among the central tendency measures. We simulate 10,000 Monte

Carlo samples of different sizes: 10, 20, 30, 40, 50 and 100, from various strictly

positive distributions ðxi [ 0Þ: beta: B(3,3) and B(1,10), lognormal: LN(0,1) and

LN(2,1), weibull: WB(2,1) and WB(5,2), gamma: G(1,6) and G(2,5), exponential:

EXP(1) and EXP(5), and chi-squared with 1 and 10 degrees of freedom: v21 and v210
(see Tables 1, 2 for results). The simulation routines have been programmed in R

and are available on request.

The columns ‘‘NOUT’’ contain the mean of each measure (Harmonic, Geometric,

Median, adjusted Median and Arithmetic) computed based on the 10,000 Monte

Carlo samples. Thus, for each sample we compute all the five central tendency

measures, resulting in 10,000 different values per measure. Next, the mean of each

measure is computed and is shown in columns ‘‘NOUT’’. After simulating the data,

we manually introduce one, two, three, four, five and ten severe outliers in the

samples with sizes 10, 20, 30, 40, 50 and 100, respectively, randomly replacing the

original observations with the value: xSO ¼ Q3 þ 3� IQR, the usual threshold for

severe outliers, where Q3 and IQR are the third quartile and the inter-quartile range,

respectively. The mean of the measures computed ‘‘with outliers’’ is shown in the

columns ‘‘OUT’’.

As can be seen in Tables 1 and 2, the value of the adjusted median is always

between the geometric/median and the arithmetic average, confirming its interme-

diate position. Thus, being closer to the arithmetic average also accommodates the

outlying observations, without exacerbating its effect on the final result. The

distributions, with the exception of the symmetric B(3,3), are all asymmetric

positive and become even more asymmetrical when severe upper outliers are

introduced. These conclusions are based on the ‘‘SK’’ estimates resulting from the

proposed measure in (18), which are almost zero for B(3,3) and positive for the

remaining distributions. The value of the estimates also increases with outlying

observations, pointing to an even longer right tail.

To confirm that outlying observations do not affect the median, harmonic and

geometric means as they do with regard to the arithmetic average, we compare the

simulation results without (‘‘NOUT’’) and with (‘‘OUT’’) outliers. As can be seen,

123

Averages: There is Still Something to Learn



Ta
bl
e
1

C
en
tr
al

te
n
d
en
cy

m
ea
su
re
s,
ad
ju
st
ed

m
ed
ia
n
an
d
sk
ew

n
es
s

H
A

G
A

M
E
D

aM
E
D

A
A

S
K

D
is
t.

n
N
O
U
T

O
U
T

N
O
U
T

O
U
T

N
O
U
T

O
U
T

N
O
U
T

O
U
T

N
O
U
T

O
U
T

N
O
U
T

O
U
T

B
(3
,3
)

1
0

0
.4
1
8

0
.4
4
9

0
.4
6
2

0
.5
1
2

0
.4
9
9

0
.5
2
7

0
.5
0
0

0
.5
4
8

0
.5
0
0

0
.5
8
3

0
.0
0
1

0
.2
6
1

2
0

0
.4
1
0

0
.4
4
1

0
.4
5
9

0
.5
1
3

0
.5
0
0

0
.5
3
0

0
.5
0
0

0
.5
5
1

0
.5
0
0

0
.5
9
1

-
0
.0
0
1

0
.2
7
2

3
0

0
.4
0
8

0
.4
3
9

0
.4
5
9

0
.5
1
4

0
.5
0
1

0
.5
3
0

0
.5
0
1

0
.5
5
1

0
.5
0
0

0
.5
9
4

-
0
.0
0
2

0
.2
7
7

4
0

0
.4
0
5

0
.4
3
7

0
.4
5
8

0
.5
1
3

0
.5
0
0

0
.5
2
9

0
.5
0
0

0
.5
5
0

0
.5
0
0

0
.5
9
4

0
.0
0
1

0
.2
8
1

5
0

0
.4
0
4

0
.4
3
6

0
.4
5
8

0
.5
1
4

0
.5
0
0

0
.5
2
9

0
.5
0
0

0
.5
5
0

0
.5
0
0

0
.5
9
6

0
.0
0
1

0
.2
8
4

1
0
0

0
.4
0
2

0
.4
4
1

0
.4
5
7

0
.5
2
6

0
.5
0
0

0
.5
3
7

0
.5
0
0

0
.5
6
3

0
.5
0
0

0
.6
1
6

-
0
.0
0
1

0
.3
1
7

B
(1
,1
0
)

1
0

0
.0
3
2

0
.0
3
6

0
.0
5
7

0
.0
6
9

0
.0
7
1

0
.0
8
2

0
.0
8
1

0
.1
0
3

0
.0
9
1

0
.1
2
1

0
.3
2
9

0
.4
5
8

2
0

0
.0
2
6

0
.0
2
9

0
.0
5
6

0
.0
6
8

0
.0
6
9

0
.0
8
0

0
.0
8
0

0
.1
0
3

0
.0
9
1

0
.1
2
3

0
.3
6
4

0
.4
9
0

3
0

0
.0
2
3

0
.0
2
6

0
.0
5
5

0
.0
6
7

0
.0
6
8

0
.0
7
9

0
.0
7
8

0
.1
0
3

0
.0
9
1

0
.1
2
3

0
.3
7
5

0
.5
0
2

4
0

0
.0
2
1

0
.0
2
4

0
.0
5
4

0
.0
6
7

0
.0
6
8

0
.0
7
9

0
.0
7
8

0
.1
0
3

0
.0
9
1

0
.1
2
4

0
.3
8
1

0
.5
0
6

5
0

0
.0
2
0

0
.0
2
3

0
.0
5
4

0
.0
6
7

0
.0
6
8

0
.0
7
9

0
.0
7
8

0
.1
0
3

0
.0
9
1

0
.1
2
4

0
.3
8
1

0
.5
0
8

1
0
0

0
.0
1
7

0
.0
2
0

0
.0
5
4

0
.0
6
9

0
.0
6
7

0
.0
8
1

0
.0
7
7

0
.1
0
8

0
.0
9
1

0
.1
3
1

0
.3
8
9

0
.5
2
6

L
N
(0
,1
)

1
0

0
.6
9
9

0
.7
7
5

1
.0
5
0

1
.2
5
1

1
.0
8
7

1
.2
6
4

1
.4
4
6

1
.7
9
0

1
.6
4
8

2
.0
9
4

0
.4
6
4

0
.5
3
9

2
0

0
.6
5
2

0
.7
2
2

1
.0
2
3

1
.2
2
6

1
.0
3
8

1
.2
0
2

1
.4
1
6

1
.7
8
1

1
.6
5
1

2
.1
0
9

0
.5
2
1

0
.5
8
6

3
0

0
.6
3
9

0
.7
0
4

1
.0
1
9

1
.2
2
0

1
.0
2
8

1
.1
8
4

1
.4
0
9

1
.7
7
9

1
.6
5
7

2
.1
1
7

0
.5
4
1

0
.6
0
2

4
0

0
.6
3
2

0
.6
9
7

1
.0
1
4

1
.2
1
6

1
.0
2
2

1
.1
7
7

1
.3
9
9

1
.7
7
0

1
.6
5
2

2
.1
1
3

0
.5
4
7

0
.6
0
6

5
0

0
.6
2
4

0
.6
8
8

1
.0
0
8

1
.2
0
9

1
.0
1
5

1
.1
6
9

1
.3
8
9

1
.7
6
3

1
.6
4
5

2
.1
0
7

0
.5
5
2

0
.6
1
0

1
0
0

0
.6
1
9

0
.6
9
5

1
.0
0
7

1
.2
5
5

1
.0
1
0

1
.2
0
1

1
.3
8
5

1
.8
3
9

1
.6
5
2

2
.2
0
9

0
.5
6
5

0
.6
2
3

L
N
(2
,1
)

1
0

5
.2
0
9

5
.7
8
0

7
.8
1
0

9
.3
0
0

8
.0
7
2

9
.3
7
8

1
0
.7
0
8

1
3
.2
3
7

1
2
.1
9
4

1
5
.4
9
1

0
.4
6
2

0
.5
3
7

2
0

4
.8
2
8

5
.3
3
7

7
.5
6
6

9
.0
4
9

7
.6
8
1

8
.8
7
5

1
0
.4
3
8

1
3
.1
0
9

1
2
.1
6
3

1
5
.5
1
9

0
.5
1
9

0
.5
8
4

3
0

4
.7
2
1

5
.2
0
9

7
.5
1
3

9
.0
0
1

7
.5
7
1

8
.7
3
8

1
0
.3
5
9

1
3
.0
8
7

1
2
.1
8
6

1
5
.5
7
7

0
.5
4
1

0
.6
0
0

4
0

4
.6
6
6

5
.1
4
4

7
.4
7
8

8
.9
6
7

7
.5
4
6

8
.6
9
9

1
0
.2
8
7

1
3
.0
4
1

1
2
.1
5
5

1
5
.5
6
9

0
.5
4
5

0
.6
0
5

5
0

4
.6
3
5

5
.1
0
5

7
.4
6
9

8
.9
5
8

7
.5
2
7

8
.6
7
5

1
0
.2
7
9

1
3
.0
4
3

1
2
.1
8
0

1
5
.5
9
6

0
.5
5
1

0
.6
0
9

123

J. Dias Curto



Ta
bl
e
1
co
n
ti
n
u
ed

H
A

G
A

M
E
D

aM
E
D

A
A

S
K

D
is
t.

n
N
O
U
T

O
U
T

N
O
U
T

O
U
T

N
O
U
T

O
U
T

N
O
U
T

O
U
T

N
O
U
T

O
U
T

N
O
U
T

O
U
T

1
0
0

4
.5
5
6

5
.1
1
5

7
.4
2
4

9
.2
4
6

7
.4
5
0

8
.8
5
2

1
0
.2
2
0

1
3
.5
7
1

1
2
.1
8
9

1
6
.3
0
1

0
.5
6
5

0
.6
2
3

W
B
(2
,1
)

1
0

0
.6
3
5

0
.6
9
1

0
.7
6
5

0
.8
7
0

0
.8
4
2

0
.9
1
0

0
.8
6
1

0
.9
8
3

0
.8
8
7

1
.0
7
9

0
.1
2
1

0
.3
3
0

2
0

0
.6
0
8

0
.6
6
3

0
.7
5
8

0
.8
6
7

0
.8
3
8

0
.9
0
6

0
.8
5
4

0
.9
8
3

0
.8
8
8

1
.0
9
3

0
.1
3
5

0
.3
5
2

3
0

0
.5
9
5

0
.6
4
8

0
.7
5
3

0
.8
6
3

0
.8
3
3

0
.9
0
0

0
.8
4
8

0
.9
7
8

0
.8
8
4

1
.0
9
5

0
.1
4
0

0
.3
6
0

4
0

0
.5
9
0

0
.6
4
3

0
.7
5
2

0
.8
6
4

0
.8
3
4

0
.9
0
2

0
.8
4
8

0
.9
7
9

0
.8
8
5

1
.0
9
9

0
.1
3
9

0
.3
6
1

5
0

0
.5
8
6

0
.6
3
9

0
.7
5
2

0
.8
6
4

0
.8
3
4

0
.9
0
2

0
.8
4
6

0
.9
7
9

0
.8
8
6

1
.1
0
1

0
.1
4
1

0
.3
6
3

1
0
0

0
.5
7
6

0
.6
3
9

0
.7
5
0

0
.8
8
8

0
.8
3
2

0
.9
1
6

0
.8
4
3

1
.0
1
0

0
.8
8
6

1
.1
4
8

0
.1
4
4

0
.3
9
3

W
B
(5
,2
)

1
0

1
.7
3
6

1
.8
2
8

1
.7
9
0

1
.9
1
6

1
.8
5
7

1
.9
1
4

1
.8
5
0

1
.9
5
0

1
.8
3
8

2
.0
1
4

0
.0
5
5

0
.2
1
9

2
0

1
.7
2
6

1
.8
2
3

1
.7
8
5

1
.9
1
9

1
.8
5
6

1
.9
1
4

1
.8
5
0

1
.9
4
9

1
.8
3
6

2
.0
2
4

0
.0
6
1

0
.2
3
0

3
0

1
.7
2
4

1
.8
2
2

1
.7
8
5

1
.9
2
3

1
.8
5
8

1
.9
1
7

1
.8
5
3

1
.9
5
0

1
.8
3
7

2
.0
3
1

0
.0
6
1

0
.2
3
4

4
0

1
.7
2
3

1
.8
2
2

1
.7
8
4

1
.9
2
3

1
.8
5
9

1
.9
1
7

1
.8
5
3

1
.9
5
0

1
.8
3
7

2
.0
3
3

0
.0
6
4

0
.2
3
5

5
0

1
.7
2
3

1
.8
2
2

1
.7
8
4

1
.9
2
4

1
.8
5
9

1
.9
1
8

1
.8
5
4

1
.9
5
0

1
.8
3
7

2
.0
3
4

0
.0
6
6

0
.2
3
6

1
0
0

1
.7
2
0

1
.8
4
2

1
.7
8
3

1
.9
5
4

1
.8
5
8

1
.9
3
1

1
.8
5
5

1
.9
7
3

1
.8
3
7

2
.0
7
6

0
.0
6
4

0
.2
7
5

W
e
si
m
u
la
te

1
0
,0
0
0
M
o
n
te

C
ar
lo

sa
m
p
le
s
o
f
d
if
fe
re
n
t
si
ze
s:
1
0
,
2
0
,
3
0
,
4
0
,
5
0
an
d
1
0
0
fr
o
m

d
is
tr
ib
u
ti
o
n
s:
b
et
a:

B
(3
,3
)
an
d
B
(1
,1
0
),
lo
g
n
o
rm

al
:
L
N
(0
,1
)
an
d
L
N
(2
,1
),

w
ei
b
u
ll
:
W
B
(2
,1
)
an
d
W
B
(5
,2
).
T
h
e
v
al
u
es

in
th
e
ta
b
le

re
p
re
se
n
t
th
e
m
ea
n
o
f
ea
ch

m
ea
su
re

re
su
lt
in
g
fr
o
m

th
e
1
0
,0
0
0
sa
m
p
le
s.

‘‘
N
O
U
T
’’
an
d
‘‘
O
U
T
’’
re
p
re
se
n
t
th
e

si
m
u
la
ti
o
n
re
su
lt
s
w
it
h
o
u
t
an
d
w
it
h
o
u
tl
ie
rs
,
re
sp
ec
ti
v
el
y
.
‘‘
S
K
’’
is

th
e
sk
ew

n
es
s
m
ea
su
re

d
efi
n
ed

in
(1
8
).
H
A
h
ar
m
o
n
ic
,
G
A
g
eo
m
et
ri
c,

M
E
D

m
ed
ia
n
,
a
M
E
D

ad
ju
st
ed

m
ed
ia
n
,
A
A
ar
it
h
m
et
ic

av
er
ag
e

123

Averages: There is Still Something to Learn



Ta
bl
e
2

C
en
tr
al

te
n
d
en
cy

m
ea
su
re
s,
ad
ju
st
ed

m
ed
ia
n
an
d
sk
ew

n
es
s

H
A

G
A

M
E
D

aM
E
D

A
A

S
K

D
is
t.

n
N
O
U
T

O
U
T

N
O
U
T

O
U
T

N
O
U
T

O
U
T

N
O
U
T

O
U
T

N
O
U
T

O
U
T

N
O
U
T

O
U
T

G
(1
,6
)

1
0

0
.8
5
4

0
.9
1
6

0
.9
2
7

1
.0
2
6

0
.9
5
5

1
.0
1
1

0
.9
7
4

1
.0
7
6

1
.0
0
0

1
.1
6
0

0
.1
4
0

0
.3
4
1

2
0

0
.8
4
4

0
.9
0
6

0
.9
2
3

1
.0
2
7

0
.9
5
0

1
.0
0
6

0
.9
6
7

1
.0
7
6

1
.0
0
1

1
.1
7
3

0
.1
5
9

0
.3
6
5

3
0

0
.8
4
0

0
.9
0
2

0
.9
2
0

1
.0
2
6

0
.9
4
7

1
.0
0
4

0
.9
6
3

1
.0
7
5

1
.0
0
0

1
.1
7
5

0
.1
6
4

0
.3
7
1

4
0

0
.8
3
9

0
.9
0
2

0
.9
2
1

1
.0
2
8

0
.9
4
8

1
.0
0
5

0
.9
6
3

1
.0
7
5

1
.0
0
1

1
.1
7
9

0
.1
6
4

0
.3
7
4

5
0

0
.8
3
7

0
.9
0
1

0
.9
2
0

1
.0
2
8

0
.9
4
7

1
.0
0
3

0
.9
6
1

1
.0
7
5

1
.0
0
1

1
.1
8
0

0
.1
6
8

0
.3
7
8

1
0
0

0
.8
3
5

0
.9
1
2

0
.9
1
8

1
.0
5
0

0
.9
4
6

1
.0
1
4

0
.9
5
7

1
.0
9
8

0
.9
9
9

1
.2
1
6

0
.1
7
0

0
.4
0
5

G
(2
,5
)

1
0

1
.6
5
5

1
.7
7
8

1
.8
2
8

2
.0
3
5

1
.8
9
6

2
.0
1
7

1
.9
4
3

2
.1
6
7

2
.0
0
4

2
.3
5
2

0
.1
5
5

0
.3
5
0

2
0

1
.6
2
2

1
.7
4
7

1
.8
1
1

2
.0
3
0

1
.8
7
6

2
.0
0
0

1
.9
1
9

2
.1
6
0

1
.9
9
7

2
.3
7
1

0
.1
7
4

0
.3
7
3

3
0

1
.6
1
4

1
.7
4
0

1
.8
0
8

2
.0
3
0

1
.8
7
3

1
.9
9
6

1
.9
1
2

2
.1
5
8

1
.9
9
7

2
.3
8
0

0
.1
7
9

0
.3
8
1

4
0

1
.6
1
4

1
.7
4
0

1
.8
0
9

2
.0
3
3

1
.8
7
3

1
.9
9
5

1
.9
0
9

2
.1
5
7

1
.9
9
9

2
.3
8
4

0
.1
8
2

0
.3
8
5

5
0

1
.6
1
0

1
.7
3
6

1
.8
0
7

2
.0
3
3

1
.8
7
1

1
.9
9
5

1
.9
0
6

2
.1
5
8

2
.0
0
0

2
.3
8
9

0
.1
8
5

0
.3
8
7

1
0
0

1
.6
0
6

1
.7
6
0

1
.8
0
6

2
.0
8
2

1
.8
7
0

2
.0
2
0

1
.9
0
0

2
.2
1
2

2
.0
0
0

2
.4
7
1

0
.1
8
7

0
.4
1
5

E
X
P
(1
)

1
0

0
.3
2
8

0
.3
7
5

0
.6
0
9

0
.7
4
0

0
.7
4
8

0
.8
7
3

0
.8
8
7

1
.1
2
9

1
.0
0
1

1
.3
2
9

0
.3
6
6

0
.4
8
0

2
0

0
.2
6
0

0
.2
9
5

0
.5
8
5

0
.7
1
6

0
.7
2
1

0
.8
4
0

0
.8
6
4

1
.1
2
7

1
.0
0
2

1
.3
5
0

0
.4
0
7

0
.5
1
7

3
0

0
.2
3
3

0
.2
6
5

0
.5
7
7

0
.7
1
0

0
.7
1
0

0
.8
3
1

0
.8
5
1

1
.1
2
3

1
.0
0
0

1
.3
5
4

0
.4
2
0

0
.5
2
7

4
0

0
.2
1
8

0
.2
4
7

0
.5
7
4

0
.7
0
6

0
.7
0
6

0
.8
2
5

0
.8
4
6

1
.1
2
2

1
.0
0
0

1
.3
5
8

0
.4
2
6

0
.5
3
3

5
0

0
.2
0
4

0
.2
3
2

0
.5
7
0

0
.7
0
3

0
.7
0
3

0
.8
2
2

0
.8
4
3

1
.1
2
1

1
.0
0
0

1
.3
6
0

0
.4
3
0

0
.5
3
6

1
0
0

0
.1
7
5

0
.2
0
4

0
.5
6
7

0
.7
3
0

0
.6
9
9

0
.8
4
8

0
.8
3
7

1
.1
7
8

1
.0
0
1

1
.4
3
8

0
.4
3
6

0
.5
5
1

E
X
P
(5
)

1
0

1
.6
3
6

1
.8
7
5

3
.0
3
7

3
.6
9
8

3
.7
1
7

4
.3
5
1

4
.4
2
2

5
.6
4
4

5
.0
0
8

6
.6
4
8

0
.3
7
3

0
.4
8
4

2
0

1
.2
9
1

1
.4
7
0

2
.9
1
2

3
.5
7
2

3
.5
8
9

4
.1
8
9

4
.3
0
3

5
.6
2
7

5
.0
0
2

6
.7
4
3

0
.4
0
9

0
.5
1
8

3
0

1
.1
7
5

1
.3
3
3

2
.8
9
8

3
.5
6
3

3
.5
6
6

4
.1
6
9

4
.2
7
7

5
.6
4
7

5
.0
2
5

6
.8
1
0

0
.4
2
1

0
.5
2
8

4
0

1
.0
8
0

1
.2
2
6

2
.8
7
2

3
.5
3
3

3
.5
3
4

4
.1
2
8

4
.2
3
6

5
.6
1
5

5
.0
0
6

6
.7
9
7

0
.4
2
6

0
.5
3
3

5
0

1
.0
2
0

1
.1
5
7

2
.8
5
6

3
.5
2
0

3
.5
2
4

4
.1
1
6

4
.2
1
9

5
.6
0
7

5
.0
0
5

6
.8
0
3

0
.4
2
9

0
.5
3
6

123

J. Dias Curto



Ta
bl
e
2
co
n
ti
n
u
ed

H
A

G
A

M
E
D

aM
E
D

A
A

S
K

D
is
t.

n
N
O
U
T

O
U
T

N
O
U
T

O
U
T

N
O
U
T

O
U
T

N
O
U
T

O
U
T

N
O
U
T

O
U
T

N
O
U
T

O
U
T

1
0
0

0
.8
7
5

1
.0
1
3

2
.8
3
2

3
.6
4
4

3
.4
9
4

4
.2
3
2

4
.1
8
7

5
.8
9
5

5
.0
0
9

7
.1
9
7

0
.4
3
7

0
.5
5
2

v2 1
1
0

0
.1
0
0

0
.1
2
2

0
.3
5
2

0
.4
5
7

0
.5
4
7

0
.6
9
7

0
.8
4
9

1
.1
3
9

1
.0
0
1

1
.3
7
3

0
.5
3
8

0
.5
8
6

2
0

0
.0
5
0

0
.0
6
1

0
.3
1
4

0
.4
1
3

0
.4
9
9

0
.6
3
7

0
.8
2
5

1
.1
3
2

0
.9
9
8

1
.3
8
0

0
.5
9
0

0
.6
3
0

3
0

0
.0
3
3

0
.0
4
0

0
.3
0
1

0
.3
9
8

0
.4
8
3

0
.6
1
8

0
.8
1
5

1
.1
2
8

0
.9
9
5

1
.3
8
2

0
.6
0
6

0
.6
4
3

4
0

0
.0
2
5

0
.0
3
1

0
.2
9
9

0
.3
9
6

0
.4
7
9

0
.6
1
5

0
.8
1
4

1
.1
3
5

1
.0
0
0

1
.3
9
4

0
.6
1
3

0
.6
4
9

5
0

0
.0
2
0

0
.0
2
4

0
.2
9
4

0
.3
9
0

0
.4
7
3

0
.6
0
5

0
.8
1
1

1
.1
3
2

0
.9
9
9

1
.3
9
2

0
.6
1
8

0
.6
5
4

1
0
0

0
.0
1
0

0
.0
1
3

0
.2
8
9

0
.4
0
6

0
.4
6
6

0
.6
3
1

0
.8
0
7

1
.1
9
5

1
.0
0
1

1
.4
7
7

0
.6
2
6

0
.6
5
9

v2 1
0

1
0

1
3
.2
3
1

1
4
.1
2
2

1
4
.1
0
6

1
5
.4
9
0

1
4
.4
3
1

1
5
.1
9
9

1
4
.6
6
4

1
6
.0
4
5

1
4
.9
8
9

1
7
.1
5
3

0
.1
2
9

0
.3
3
2

2
0

1
3
.1
3
3

1
4
.0
5
0

1
4
.0
8
1

1
5
.5
4
7

1
4
.4
0
2

1
5
.1
7
1

1
4
.6
1
3

1
6
.0
7
2

1
5
.0
2
3

1
7
.3
5
1

0
.1
4
4

0
.3
5
4

3
0

1
3
.0
9
7

1
4
.0
1
5

1
4
.0
6
4

1
5
.5
4
6

1
4
.3
9
0

1
5
.1
4
3

1
4
.5
7
3

1
6
.0
4
2

1
5
.0
1
6

1
7
.3
8
0

0
.1
4
6

0
.3
6
0

4
0

1
3
.0
5
3

1
3
.9
7
9

1
4
.0
3
1

1
5
.5
3
3

1
4
.3
5
2

1
5
.1
0
8

1
4
.5
2
6

1
6
.0
1
7

1
4
.9
9
4

1
7
.3
9
7

0
.1
5
0

0
.3
6
6

5
0

1
3
.0
5
3

1
3
.9
8
3

1
4
.0
3
9

1
5
.5
4
9

1
4
.3
7
2

1
5
.1
3
0

1
4
.5
3
0

1
6
.0
2
7

1
5
.0
0
9

1
7
.4
2
6

0
.1
4
8

0
.3
6
5

1
0
0

1
3
.0
2
0

1
4
.1
5
8

1
4
.0
1
9

1
5
.8
7
2

1
4
.3
4
4

1
5
.2
7
5

1
4
.4
8
0

1
6
.3
6
0

1
4
.9
9
9

1
7
.9
3
8

0
.1
5
3

0
.3
9
6

W
e
si
m
u
la
te

1
0
,0
0
0
M
o
n
te

C
ar
lo

sa
m
p
le
s
o
f
d
if
fe
re
n
t
si
ze
s:
1
0
,
2
0
,
3
0
,
4
0
,
5
0
an
d
1
0
0
fr
o
m

d
is
tr
ib
u
ti
o
n
s:
g
am

m
a:

G
(1
,6
)
an
d
G
(2
,5
),
ex
p
o
n
en
ti
al
:
E
X
P
(1
)
an
d
E
X
P
(5
),

an
d
ch
i-
sq
u
ar
ed

w
it
h
1
an
d
1
0
d
eg
re
es

o
f
fr
ee
d
o
m
:
v2 1

an
d
v2 1

0
.
T
h
e
v
al
u
es

in
th
e
ta
b
le
re
p
re
se
n
t
th
e
m
ea
n
o
f
ea
ch

m
ea
su
re

re
su
lt
in
g
fr
o
m

th
e
1
0
,0
0
0
sa
m
p
le
s.
‘‘
N
O
U
T
’’
an
d

‘‘
O
U
T
’’
re
p
re
se
n
t
th
e
si
m
u
la
ti
o
n
re
su
lt
s
w
it
h
o
u
t
an
d
w
it
h
o
u
tl
ie
rs
,
re
sp
ec
ti
v
el
y
.
‘‘
S
K
’’
is
th
e
sk
ew

n
es
s
m
ea
su
re

d
efi
n
ed

in
(1
8
).
H
A
h
ar
m
o
n
ic
,
G
A
g
eo
m
et
ri
c,
M
E
D
m
ed
ia
n
,

a
M
E
D

ad
ju
st
ed

m
ed
ia
n
,
A
A
ar
it
h
m
et
ic

av
er
ag
e

123

Averages: There is Still Something to Learn



whereas the harmonic mean has a small increase (or remains more or less constant),

and the median and geometric averages show a moderate increase, the arithmetic

average increases sharply. Thus, the outliers strongly affect the arithmetic mean,

modestly affect the median and geometric mean, and have a small impact on the

harmonic mean.

The simulation results also indicate that the adjusted median’s increase is higher

than those of the median, harmonic and geometric means, giving more weight to the

outlying data points. At the same time, it is smaller than that of the arithmetic mean,

confirming that the adjusted median can be used to represent the central tendency of

a distribution as an alternative to the median, geometric and arithmetic means in the

presence of outlying observations.

5 S&P 500 Information Technology

To compute and compare the measures based on real economic data, we used the

daily stock price of 56 companies listed in the sector ‘‘Information Technology’’ of

Standard and Poor’s 500 (S&P 500(7)). The data set includes the daily stock prices

of Microsoft, Apple, Amazon, Google, among many other companies.

5.1 The Adjusted Median in the Central Tendency

Figures 1 and 2 show the histograms of the stock prices including and excluding

two outlying observations (the two companies with the highest price are Amazon

and Google). The vertical lines correspond to the value of the means, median and

adjusted median and their position is determined by its value (see Table 3). The

number of companies in each interval is shown at the top of each column (for

example, there are 21 companies with price between 100 and 200).

In both cases, the center seems to be in the interval 100–200. When Amazon and

Google are included, neither the harmonic nor the arithmetic averages seem

appropriate to represent the central tendency of the distribution. From the other

three measures (geometric, median and adjusted median) the latter deviates to the

upper limit of the interval (200) reflecting also the extreme observations to the right

of the distribution. When the outliers are removed, the adjusted median is very close

to the median, but is higher than the harmonic and geometric averages, reflecting the

positive asymmetry that still remains. Therefore, it appears to remain appropriate to

represent the center of the distribution. As the value of the adjusted median is not

influenced as much as the arithmetic average, the outlying observations can still

contribute to representing the center of the distribution without it deviating too

much from the other central tendency measures.

Table 3 presents descriptive statistics for companies of the S&P 500 Information

Technology sector. The asymmetry and kurtosis is, as expected, substantially

reduced when the two extreme prices are removed. The harmonic mean and the

median are relatively constant, demonstrating their resilience to extreme

7 The data source is: https://www.tradingview.com. Prices refer to June 30, 2020.
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Fig. 2 S&P 500 Information Technology excluding AMAZON and GOOGLE. HA harmonic, GA
geometric, AA arithmetic averages, MED median, aMED adjusted median

Fig. 1 S&P 500 Information Technology with AMAZON and GOOGLE. HA harmonic, GA geometric,
AA arithmetic averages, MED median, aMED adjusted median
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observations. The reduction in the geometric mean is not as high as in the adjusted

median and arithmetic average. With regard to the adjusted median, it lies between

the median and arithmetic average, giving more weight (when compared to the

median, geometric and harmonic means) to the higher stock prices (as preciously

seen, the harmonic mean gives the least weight to higher data points). As it is still

far from the arithmetic mean (especially when Amazon and Google are included),

the adjusted median is less influenced by outlying observations when compared to

the arithmetic mean.

The traditional ways to deal with outliers is to remove them or to compute central

tendency measures robust to outliers. Should we exclude those two companies or

should we give them a very low weight when we compute the average of technology

stock prices? In economic terms, maybe neither would seem to be a reasonable

decision because Amazon and Google are third and fifth in the list of the 10 largest

components of the S&P 500. Thus, an alternative way could be to keep the two

companies in the data set and compute a measure that does not penalize the higher

observations as much as the median, harmonic and geometric means. The adjusted

median fits this purpose because although the influence of higher data points is not

as high as in the arithmetic average, it does, nevertheless, give more weight to the

higher observations than the other three measures.

5.2 Bootstrapping Confidence Intervals

The bootstrap sample comprises the 56 companies listed in the sector ‘‘Information

Technology’’ of Standard and Poor’s 500. The data set includes the daily stock

prices of Microsoft, Apple, Amazon, Google, among many other companies. The

statistics of interest are the harmonic, geometric and arithmetic averages, median

and adjusted median, and ‘‘sk’’, the simple skewness statistic defined in (18). The

bootstrap is used to compute a 95% confidence interval for each measure. The R

code to run the bootstrap is presented as follows:

bootfunc\- function(data, indices){
dt\- data[indices,]

Table 3 Descriptive statistics of

daily stock price
Statistic All No outliers

Harmonic Average (HA) 86.53 83.57

Geometric Average (GA) 133.30 120.45

Median (MED) 137.46 136.34

adjusted Median (aMED) 194.73 143.09

Arithmetic Average (AA) 231.19 160.24

Minimum 16.35 16.35

Maximum 2758.82 468.87

Skewness 5.00 1.11

Kurtosis 29.72 3.61

# Companies 56 54
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c( hm_mean(dt[, 1]),
gm_meanlog(dt[, 1]),
median(dt[, 1]),
adj_median(dt[, 1])[[1]],
mean(dt[, 1]),
adj_median(dt[, 1])[[2]] ) }
data1\- data.frame(DataFile)
library(boot)
myBootstrap\- boot(data1, bootfunc, R=10000)
myBootstrap
boot.ci(myBootstrap, index=1)
boot.ci(myBootstrap, index=2)
boot.ci(myBootstrap, index=3)
boot.ci(myBootstrap, index=4)
boot.ci(myBootstrap, index=5)
boot.ci(myBootstrap, index=6)

The results are shown in Table 4. As can be seen, the limits of the confidence

intervals for ‘‘sk’’, are all positive, with the exception of the one resulting from the

Accelerated bias-corrected method, where the lower limit is slightly negative. Thus,

the distribution of stock prices is asymmetric positive and the estimates for ‘‘sk’’

also increase with the inclusion of Amazon and Google prices, the two upper outlier

observations, pointing to an even longer right tail (see Figs. 1, 2).

We can also confirm that the two outlying observations do not affect the median,

harmonic and geometric means in the way they affect the arithmetic average. Next,

we compare the results without and with the two largest prices. Whereas the limits

of the confidence interval for the harmonic mean and median have a small increase,

and the ones for the geometric mean increase moderately, the limits for the

arithmetic average increase sharply, especially the upper limit. Thus, the two

extreme prices strongly affect the arithmetic mean, modestly affect the geometric

mean, and have a small impact on the harmonic mean and the median.

The empirical results also confirm that the limits of the confidence interval for the

adjusted median (aMED) react more strongly with the inclusion of the two outlying

prices: the increase in the limits is higher when compared to those of the median,

harmonic and geometric averages, giving more weight to the outlying data points,

but it is not as exacerbated as in the arithmetic average. Thus, the intermediate

increase also accommodates the outlying data points, confirming the usefulness of

the adjusted median as an alternative to the traditional measures, with regard to

representing the central tendency of a distribution in the presence of outlying

observations.
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6 Conclusions

The average value of a data set is, possibly, the most common statistical idea

encountered in everyday life.Whenasked to compute anaverage,many students, aswell

as practitioners, assume the arithmetic mean is what is called for. However, and very

often, they are not aware that better alternative approaches are available to capture the

central tendency of a distribution, namely the geometric and harmonic means.

In this paper we revisit the three traditional averages, highlighting their strengths

and weaknesses. The arithmetic average is strongly influenced by outlying

observations, while the harmonic and geometric means are insensitive to outliers,

which can obscure large values that may be consequential. An alternative way is to

find a measure that does not penalize the higher observations as much as the harmonic

and geometric means.

To overcome the drawbacks of traditional averages, we propose the adjusted

median (aMED). The aMED does not penalize the higher data points as much as the

median, harmonic and geometric means, and it gives substantially less weight when

compared to the arithmetic average. Thus, aMED is an intermediate solution for

dealing with outlying observations.

In a Monte Carlo simulation study, we have shown that aMED lies between the

median and the arithmetic average, reinforcing our purpose of giving greater weight to

higher data points.

To compute and compare themeasures based on real economic data, we use the daily

stock price of 56 companies listed in the sector ‘‘Information Technology’’ of the S&P

500. The data set includes Amazon, Google, Microsoft and Apple, among many other

companies. We show that aMED represents the center of the daily stock price

distribution, giving an intermediateweight to the outlyingobservations,when compared

to the traditional central tendency measures.

A Contributions of Each Data Point

See Eq. (5):
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i¼1

1
xi

¼ nPn
i¼1

1
xi

;

if xi
Pn

i¼1 xi 6¼ 0:
See Eq. (7):
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xi
wiPn
i¼1 wi

¼ xi

Pn

i¼1
xi

xiPn

i¼1
xi

x1
þ
Pn

i¼1
xi

x2
þ . . .þ

Pn

i¼1
xi

xn

¼ xi
Pn

i¼1 xi

xi
Pn

i¼1 xi
Pn

i¼1
1
xi

¼ 1Pn
i¼1

1
xi

;

if xi
Pn

i¼1 xi 6¼ 0:

B Averages Inequalities

According to the means definition, see Eqs. (1), (2) and (3), their logarithms are:

ln �Xð Þ ¼ ln
1

n

Xn

i¼1

Xi

 !
; ln �XGð Þ ¼ 1

n

Xn

i¼1

ln Xið Þ and ln �XHð Þ ¼ � ln
1

n

Xn

i¼1

1

Xi

 !
:

By Jensen’s inequality,

ln
1

n

Xn

i¼1

Xi

 !
� 1

n

Xn

i¼1

ln Xið Þ;

which can be exponentiated to give the arithmetic mean-geometric mean inequality:

1

n

Xn

i¼1

Xi

|fflfflfflffl{zfflfflfflffl}
�X

�
Yn

i¼1

Xi

 !1
n

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
�XG

; thus �X� �XG:

Now comparing the harmonic with the geometric mean (and by Jensen’s

inequality):

� ln
1

n

Xn

i¼1

1

Xi

 !
� � 1

n

Xn

i¼1

ln
1

Xi

� �
¼ 1

n

Xn

i¼1

ln Xið Þ;

and by exponentiating both sides:

nPn
i¼1

1
Xi|fflfflffl{zfflfflffl}

�XH

�
Yn

i¼1

Xi

 !1
n

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
�XG

; thus �XH � �XG:

C Different Meanings of the Center

Median
Consider a first data set: 4, 6, 10, 100 (n ¼ 4, even). Thus, the median rank is

rM ¼ 1þ4
2

¼ 2:5, the median is �XM ¼ 6þ10
2

¼ 8 and
P4

i¼1 ri � rMð Þ ¼ ð1� 2:5Þ þ
ð2� 2:5Þþ ð3� 2:5Þ þ ð4� 2:5Þ ¼ 0.
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For a second data set 4, 6, 10, 20, 100 (n ¼ 5, odd), the median rank is

rM ¼ 1þ5
2

¼ 3, the median is �XM ¼ 10 and
P5

i¼1 ri � rMð Þ ¼ ð1� 3Þ þ ð2� 3Þ þ
ð3� 3Þ þ ð4� 3Þ þ ð5� 3Þ ¼ 0. Thus, the median is the center of the distribution

in terms of the counting observations: one half of the observations is on the left and

one half is on the right of the median, no matter the value of the observations.

Arithmetic average

Consider again the second data set: �XA ¼ 4þ6þ10þ20þ100
5

¼ 28 and
P5

i¼1 xi � �XAð Þ ¼ ð4� 28Þ þ ð6� 28Þ þ ð10� 28Þ þ ð20� 28Þ þ ð100� 28Þ ¼ 0 .

Thus, the arithmetic average is the center of the distribution in terms of the

deviations in absolute terms: the arithmetic mean is such that the absolute deviations

on its right is compensate by the absolute deviations on its left. So, the center is

defined in terms of the absolute deviations (or distances) between each value and the

arithmetic average:

ð4� 28Þ|fflfflfflfflffl{zfflfflfflfflffl}
�24

þð6� 28Þ|fflfflfflfflffl{zfflfflfflfflffl}
�22

þð10� 28Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
�18

ð20� 28Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
�8|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�72

þð100� 28Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
þ72

:

Geometric average

For the second data set: �XG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 6� 10� 20� 1005

p
¼ 13:69 and

xi lnðxiÞ lnðxiÞ � lnð �XGÞ

4 1.386 - 123.00%

6 1.792 - 82.45%

10 2.303 - 31.37%

20 2.996 37.94%

100 4.605 198.89%

sum 0

Compounding percentage deviation means that:

4 ¼ 13:69� expð�123%Þ, . . ., 100 ¼ 13:69� expð198:89%Þ.
Thus, the geometric average is the value that balances the negative percentage

deviations with the positive ones.
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Harmonic average

xi xi � �XH wi ¼ 1=xi
wiPn

i¼1
wi xi � �XHð Þ wiPn

i¼1
wi

� �

4 - 4.671 0.250 0.434 - 2.025

6 - 2.671 0.167 0.289 - 0.772

10 1.329 0.100 0.173 0.231

20 11.329 0.050 0.087 0.982

100 91.329 0.010 0.017 1.584

0.577 1 0

Thus, the harmonic average defines the center of the distribution in order that the

weighted deviations on its left compensate the weighted deviations on its right. The

weights are inversely proportional to the original values.
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