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Abstract

The common way to deal with outliers in empirical Economics and Finance is to
delete them, either by trimming or winsorizing, or by computing statistics robust to
outliers. However, due to their importance, there are situations where the exclusion
of these observations is not reasonable and may even be counterproductive. For
example, should we exclude the very high stock prices of Amazon and Google from
an empirical analysis? Even if the purpose is to compute an average of tech stock
prices, does it make economic and financial sense? Maybe not. A solution that
would keep the two companies in the data set and yet not penalize the higher
observations as much as the median, harmonic and geometric averages, might—
were such a solution to be available—constitute an attractive alternative. In this
paper we propose and analyze a modified measure, the adjusted median, where the
influence of the outlying observations, while not as high as in the arithmetic average
would, however, give more weight to the outlying observations than the median,
harmonic and geometric averages. Monte Carlo simulations and bootstrapping real
financial data confirm how useful the adjusted median could be.
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1 Introduction

The traditional ways to deal with outlying observations in empirical Economics and
Finance is to exclude them (by trimming or winsorizing), or by computing statistics
robust to outliers: the median and inter-quartile range, for example. Due to their
importance, however, there are situations where the exclusion of the observations is
not reasonable and may even be counterproductive. Suppose that we compute the
average of stock prices of companies listed in the “Information Technology” sector
of Standard and Poor’s 500 (S&P 500), including Amazon, Google, Microsoft and
Apple, among many others. As the stock prices of Amazon and Google are much
higher in comparison to the others, would it make sense to exclude these two
companies from the analysis or should we give them a very low weight to compute
the average? In economic terms, maybe neither of these options seems a reasonable
decision because Amazon and Google are third and fifth in the list of the 10 largest
components of the S&P 500. An alternative way would be to keep the two
companies in the data set and to compute a measure that does not penalize the
higher observations as much as the median, harmonic and geometric averages. The
adjusted median, the measure proposed in this paper, meets that purpose because
while the influence of higher data points is not as high as in the arithmetic average,
it nevertheless gives more weight to the higher observations than the median and the
other two averages.

The role of an average is to represent a data set meaningfully, and the decision to
choose the appropriate average to represent the central tendency of a distribution is
an old and yet highly topical matter, in view of what was written by Coggeshall a
long time ago (1886, p. 84). His contention was that the mean commonly employed
by the economist is not a real quantity at all, but is a quantity assumed as the
representative number of others that differ from it to a greater or lesser extent. Its
fictitious character renders it possible to choose from among different values, and
thus among different methods of finding it. Even in terms of mental images, the
word average can lead to different meanings, reinforcing the doubts when we think
on it (Kaplan et al. 2010). When asked to compute an average,' many practitioners
assume the arithmetic mean is what is called for. However, and very often, they are
not aware that better alternative approaches are available to capture the central
tendency of a distribution (Coggeshall 1886), namely the geometric and harmonic
means. Knowing which one to use for your data means understanding their
differences. For example, in the case of ratios the choice of averaging method does
matter, and sometimes the much less familiar harmonic mean provides a more
logical approach to averaging the ratio between two magnitudes (Agrrawal et al.
2010). For square contingency tables, Nakagawa et al. (2020) proposes, as an
alternative to the weighted arithmetic mean to represent the degree of departure
from the marginal homogeneity, a measure which is expressed as a weighted
geometric mean of the diversity index.

The averages, and the central tendency measures in general, continue to be used
in most of scientific fields. In Economics and Finance, e.g., Gan et al. (2020),

' We use “average” or “mean” interchangeably.
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Wellalage and Fernandez (2019) and Cheuk and Vorst (1999). In Education, e.g.,
Assari et al. (2020). In Mathematics, Statistics and Econometrics, e.g., Maki and
Ota (2020), Kolahdouz et al. (2020), Priam (2020), del Barrio et al. (2019) and Gou
et al. (2019). In Climate Change, e.g., Lyu et al. (2020). In Complexity Systems,
e.g., Wu et al. (2020). In Psychology, e.g., Wenzel and Kubiak (2020). In Logistics,
e.g., Choi et al. (2019), just to mention a few. In view of their importance, the main
purpose of this paper is to clarify differences regarding averaging methods. The
contribution we make is fivefold. First, we show in Sect. 2 that the harmonic mean is
equivalent to a weighted arithmetic average, where the weights are inversely
proportional to the original values, and they are computed in such a way that the
contribution of each value to the final average is exactly the same. Thus, the weights
compensate the original values to make the contribution of each value equal to the
final average. We also generalize the new formula, taking the harmonic and
arithmetic averages as particular cases.

Second, different central tendency measures give different interpretations of the
center of a distribution. In Sect. 2.2 we show that the median is the center of the
distribution in terms of the observations counted, no matter the value of the
observations. The arithmetic mean is such that the absolute deviations to the right of
it are compensated by the absolute deviations on its left. So, the center is defined in
terms of the absolute deviations (or distances) between each value and the
arithmetic average. The geometric average defines the center of the distribution in
terms of the compounding relative (percentage) deviations. The negative deviations
in relative terms are balanced by the positive ones. Finally, the harmonic mean
defines the center of the distribution in order that the weighted deviations on its left
compensate the weighted deviations on its right, and the weights are inversely
proportional to the original values.

Third, the traditional central tendency measures do not properly handle outlying
observation. The arithmetic average is dominated by outlying observations. The
insensitivity of the geometric and harmonic averages to outliers can obscure large
values that may be consequential. Finally, the median does not use all available data
and can be misleading with regard to distributions with a long tail because it
discards so much information. Due to the drawbacks of traditional measures, we
propose a modified one—the adjusted median—in Sect. 3. The adjusted median
originates an intermediate value between the median and the arithmetic average,
giving more weight to the higher observations than the median and the other two
averages. However, the contribution of each value to the final result is not exactly
the same as in the harmonic average. Monte Carlo simulation shows the
intermediate position of the adjusted median. We also propose a simple measure
of skewness, taking the median as the reference.

Fourth, to compute and compare the measures based on real economic data, we
use the daily stock price of 56 companies listed in the “Information Technology”
sector of the S&P 500. The data set includes Amazon, Google, Microsoft and Apple,
among many others. We show that the adjusted median represents the center of the
daily stock price distribution without excluding or giving a very low weight to the
outlying observations. Finally, we provide the R code to perform the calculations
arising in this study.
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The outline of the paper is as follows. First, we review the traditional averaging
methods suggested in statistics textbooks, and used by academic researchers and
practitioners. We also discuss some particularities of the means leading to a better
interpretation and understanding. A new measure, the adjusted median, is proposed
in Sect. 3. Monte Carlo simulation studies are performed in Sect. 4 to show the
location of this measure and a real data example is also considered in Sect. 5.
Finally, we present our concluding remarks.

2 Revisiting the Central Tendency Measures

The classic methods of averaging data are the three Pythagorean means: the familiar
arithmetic mean, the geometric mean (the nth root of the product of the numbers)
and the harmonic mean (the reciprocal of the arithmetic mean of the reciprocals of
the numbers).

The arithmetic mean, or simply the mean or average, is the sum of all the X
values divided by the number of observations (n):

_ 1 <& X .
XA:;;)C[:ZZTI, =12, (1)

where x; represents the different values assumed by the X variable. See, for example,
Chen (1995) for statistical inference about the arithmetic average in the case of
positively skewed distributions.

The geometric mean is another type of average, pointing to the central tendency
of a set of numbers, and is defined as the root of order n of the product of values x;:

n
XG:{'/Hx,-:\'/xlxxzx...xx,,:(xlx...xxn)%, (2)
i=1

where the capital letter II represents a series of multiplications (or products). As
Galton (1897) suggested in one of the earliest papers on geometric average, the
distribution of X will approach normality as n increases, for all parent distributions
to which the central limit theorem applies. Thus, the distribution of Xs; will
approach the log-normal form, even though the parent distribution of X may not be
log-normal (Alf and Grossberg 1979). The geometric mean applies only to numbers
of the same sign in order to avoid the nth root of a negative number when n is even,
which is not defined in the real numbers set. In general only positive numbers are
allowed (Excel, for example).

Let L L .. Lbe the reciprocals of the given set of observations. The equally
17 X2 Xn

weighted harmonic mean is expressed as the reciprocal of the arithmetic mean of the
reciprocals:
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no 1\ !
XH: Zz:lx,- _ n . (3)

n > Xl

If different weights d1,d», ..., J, are assigned to the x; observations, the weighted
harmonic mean is defined by:

2 Z?:l 0i
XH = no ;" (4)
Zi:l X
The relation between the three means is: Xy < Xg < X4 (for strictly positive values).
Thus, the arithmetic average is the largest one.”
What we propose in this paper is a measure between the arithmetic average and
the median that better accommodates the outlying observations (see Sect. 3).

2.1 Contributions to the Final Average

As
- w; n
XH - Xi n ' = n (5)
17
; D Wi Zi:l},
where w; = %, the harmonic mean is equivalent to a weighted arithmetic

average, where the weights are inversely proportional to the original values and are
computed in such a way that the contribution of each value (x;) to the final average
is exactly the same’:

Wi W Wi Wa 1
7 =X2 n ==X = = A

D iy Wi D iy Wi D iy Wi B 27:1“’1‘_2?:1%. (6)

Pi

If x,, is the minimum value and its (highest) weight is p,,, the weight (smaller) of the
other values x; is given by p; = 2p,,: the weight is inversely proportional to the

values, where the constant contribution of each value to the harmonic average is
given by k = x; X p;.

Thus, all data points, in spite of their value, make the same contribution to the
harmonic average, giving more weight to the smallest observations in the data set.
However, due to its insensitivity to outliers, the harmonic mean (like the geometric
mean, as we will see next) can obscure large values that may be consequential.

To compute the harmonic mean by Eq. (5) we can use the R function whose code
is presented as follows:

HarmonicMean < - function (x) {
weigsl = sum(x) /x

2 See “Appendix B” for demonstration.

3 See “Appendix A” for demonstrations.
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weigs = weigsl/sum(weigsl)
HarmonicMean <- t (x) % * $weigs
return (HarmonicMean) }

To compute the harmonic mean by using the standard formula we can use the R
function:

hm_mean < - function(a) {length(a)/ (sum(l/a))}

Equation (5) can be generalized to:

XGA = Zx, (7)

1W

where k is a real number. If k = 1, X4 is the harmonic average; if k =0, Xga is the
arithmetic average. The geometric average is obtained for a particular value of k in
the range 0 <k <1, which is not always constant.

In the (simple) arithmetic average what is constant is the weight associated with
each data point:

1 1
X4 = Z X, = —x1 + xz +. —|—;xn. (8)

Therefore, if the values are different, the contribution of each (¢; = %x,-) to the
arithmetic average is not constant and higher values will make a greater contribu-
tion, which is directly proportional to the value; this is the reason why the arithmetic
average is influenced by outlying observations (Lyu et al. 2020). The constant of
proportionality is k = { and ¢; = kx; = 1 x;.

The simplest way to reduce the importance of extreme points is to use the
harmonic or geometric averages as an alternative to the arithmetic average when the
data set includes outlying observations. The geometric average is the root of order n
of the product of x;’s and the contribution of each value to the geometric average is
neither constant nor directly proportional to the respective value.

By taking the natural log of both sides of Eq. (2) we get:

1 1
Zln (1) :—ln xl)+;1n(m)+--~+;ln(xn). (9)

By taking the anti-logarithm of both sides:

1

_ 1< 11 1
Xc = exp l—Zln(xi)l = Xx5 - X (10)
n4
i=1
The R code of two functions to compute the geometric mean is:

gm_mean <- function(a){ prod(a)”~(1l/length(a)) }or
gm_meanlog <- function(a){
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len <- length(a)
gm_meanlog <- exp(l/len * sum(log(a)))
return (gm_meanlog) }

Based on Jensen inequality,* we conclude that the value of the arithmetic average
is at least the value of the geometric average: X4 > X (where the equality holds
only if all the x; are equal). The contribution of each data point to the geometric
average is less than proportional to the x; values, reducing the impact of outlying
observations on the final value. Thus, the contribution of each data point to the
geometric average is neither constant, as in the harmonic mean, nor directly
proportional to the values, as in the arithmetic average, resulting in an intermediate
value between harmonic and arithmetic averages.

2.2 Different Meanings of the Center

Choosing the appropriate mean to represent the central tendency of a distribution is
an old and yet highly topical matter, in view of what was written by Coggeshall a
long time ago (1886, p. 84) where he stated that the mean commonly employed by
the economist is not a real quantity at all, but is a quantity assumed as the
representative number of others that more or less differ from it. Its fictitious
character renders it possible to choose from among different values, and thus among
different methods of finding it. The same conclusion holds for the median when the
number of observations is even.

Let us consider first the median to represent the central tendency of a distribution.
By ranking the observations from the lowest to the highest, the ranks associated
with each observation are: ry, 1, ..., r, where r; and r, represent the minimum and
the maximum, respectively. The median (Xjs) corresponds to the middle point in
terms of counted observations (absolute frequencies) in spite of the respective value:
ry = % and the following property holds for the median:

n

> (ri—ru) =0, (11)

i=1

where r; represents the ranks of ordered observations and ry, is the rank corre-
sponding to the median. The sum of the differences between the ranks, and the rank
corresponding to the median, is zero.

The arithmetic average (X4) defines the center of the distribution in terms of the
observations’ value:

n

> (i —Xa) =0, (12)

i=1

where x; represents the value of each observation in the data set.

4 See “Appendix B” for demonstrations.
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The geometric average (X) defines the center of the distribution in terms of the
log percentage deviations (Tronquvist et al. 1985) around X and the next property
holds for this average:

(i)

or the sum of the differences between the log of x; and the log of the geometric
average is zero:

n

> lIin(x;) — In(Xg)] =0, (14)

i=1

where In(x;) — In(Xs), when multiplied by 100, is the log percentage deviation
between each observation and the geometric average. Thus, the geometric average is
the value that balances the negative log percentage deviations with the positive
ones.
The harmonic average (Xp) defines the center of the distribution in terms of the
absolute deviations weighted by Zﬁf" " (see Eq. (5)):
=1

n

Z(xifxy)%:o. (15)
i=1 =1

Thus, the harmonic mean defines the center of the distribution such that the
weighted deviations on its left compensate the weighted deviations on its right. The
weights are inversely proportional to the original values.’

Between the median, harmonic, geometric and arithmetic averages, which
measure should be used to represent the central tendency of a distribution? We very
often use the arithmetic mean and the median, occasionally the geometric mean, and
very rarely the harmonic mean. However, there is nothing to actually prevent us
from using whatever measure we would like; we have to choose the one most
suitable for each particular situation.

For a sequence of independent (non-outlying) observations, the arithmetic mean
is the preferred measure to represent the central tendency because all the available
data is used to compute the respective value, while to the median contributes only
half of the data. This is the case, for example, with regard to the financial incomes of
different companies. If a company happens to perform poorly, the chance of other
companies doing better isn’t affected. In general, statisticians use arithmetic means
to represent independent data with no significant outliers. However, when it comes
to annual investment returns, the numbers are not independent from each other. If
you lose a ton of money one year, you have much less capital to generate returns
during the following years. So, we cannot say that yearly returns are independent,
and the geometric average is more suitable to represent the center. Thus, the
geometric mean is more appropriate for data series that exhibit serial correlation.

5 See “Appendix C” for simple applications of the results of this subsection.
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When at least one of the observations is zero the arithmetic mean is still more
appropriate to average the observations because the geometric mean is zero and the
harmonic mean cannot be computed as the reciprocals of the original values are
undefined.

In the presence of outlying observations, the harmonic mean of a list of numbers
tends strongly toward the smaller elements of the list; it tends (compared to the
arithmetic mean) to mitigate the impact of large outliers and to aggravate the impact
of the smallest ones. When you look at the results of arithmetic and geometric
means calculations, we notice that the effect of outliers is greatly dampened in the
geometric mean.

As the arithmetic average is not a robust statistic, meaning that it is influenced by
extreme observations, and the harmonic and geometric averages tend to mitigate the
impact of large observations, the median is used more often to represent the central
tendency because it is robust towards outlying observations. However, the median is
computed based on the ranks and not on the value of the observations. Thus, in the
next section we propose a new measure that incorporates all data values in its
calculation and which, compared to traditional measures, provides an alternative
description of the central tendency when there are outlying observations.

3 The Adjusted Median

We have already pointed out the drawbacks of the three averages. The arithmetic
average is dominated by outlying observations (Matthews 2004). And the
insensitivity of the geometric and harmonic averages to outliers can obscure large
values that may be consequential. The median does not use all the available data and
can be misleading in distributions with a long tail because it discards so much
information.

Due to the drawbacks of traditional central tendency measures in the presence of
outlying observations, we propose the adjusted Median: X, (aMED), for its
capacity to provide an intermediate value able to take into account the extreme
observations, between the lowest (harmonic, geometric and median) and the highest
(arithmetic) averages. Let Sy and Sk be the sum of x; deviations to the left and to the
right of the median:

ny 2
5= 3 Cuw) wdSi— 3 G-Xw (9
X,'<XM Xi>XM

The adjusted Median (X,) is defined as:

Xt = Xog + X SL1g, %]
aM — AM SR+SL A M|

sk

(17)

where Xy <X, <X4, when the distribution is asymmetric positive and the arith-
metic average is higher than the median: X, > Xj;; X4 <X <Xy, when the
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distribution is asymmetric negative and the arithmetic average is lower than the
median: X <X). If the distribution is symmetric, Sg = S; and X,y = Xy = X,.
The ratio

_ Sg—S1

sk = —
Sr + St

(18)
can also be used as a simple measure of skewness (taking the median as the ref-
erence) pointing to an asymmetric positive, asymmetric negative or symmetric
distribution, when its value is positive, negative or zero, respectively. The advantage
of this measure is that it always ranges between —1 and +1.

Thus, the adjusted median causes the median to shift towards the arithmetic
average and its location depends on the balance between the two sides of the median
(not in terms of frequencies, but in terms of values, represented by the sums S;, and
Sg). This formula uses a linear interpolation to estimate the adjusted median and it
follows the usual method to calculate the mode in continuous grouped data (Basu
and DasGupta 1997). X, originates an intermediate® value between the median and
arithmetic average, bringing more weight to the extreme observations, when
compared to the median, harmonic and geometric averages, and less weight when
compared to the arithmetic average. Thus, outlying observations are still influential
in the final result, but not as much as in the arithmetic average.

The code of the R function to compute the adjusted median is shown as follows:

adj_median <- function (x) {

medl <- median (x)

sumleft <- sum(medl-x[x<medl])
sumright <- sum(x[x>medl]-medl)
tot < - sumleft + sumright

sk <- (sumright-sumleft) /tot
diffl <- abs (mean (x)-median (x))
diff2 < - gk xdiffl

if (mean (x)<median(x)) {

aMED < - median (x)-diff2 } else {
aMED <- median(x)+diff2 }
return(list (aMED, sk)) }

The adjusted median (X,) does not penalize the higher data points as much as
the median, harmonic and geometric means, and it gives less weight to those
observations, when compared to the arithmetic average. Thus, in the harmonic and
geometric averages (especially the first) the higher data points are penalized
excessively, and the resulting mean is too small to represent the outlying
observations. On the other hand, the arithmetic average exacerbates the effect of
those observations, giving rise to a mean that is generally too high (or too low). An
adjusted median, therefore, can be an attractive way to deal with outlying
observations: these values still contribute to X, but the weight is lower when

6 See Sect. 4 for details.
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compared to the arithmetic average and higher when compared to the median,
harmonic and geometric means.

What are the differences of the adjusted median when compared to the traditional
means and median? The adjusted median provides that higher observations remain
in the data set without giving as much weight as in the arithmetic average, or too
small a weight as in the other three central tendency measures. Thus, it is an
alternative way to deal with outlying observations. Furthermore, there are no
constraints to computing the adjusted median even in the context of variables that
can take non-positive values, which is a shortcoming of geometric and harmonic
averages, as previously pointed out.

4 Simulation Study

A simulation study was conducted to confirm the intermediate position of the
adjusted median among the central tendency measures. We simulate 10,000 Monte
Carlo samples of different sizes: 10, 20, 30, 40, 50 and 100, from various strictly
positive distributions (x; > 0): beta: B(3,3) and B(1,10), lognormal: LN(0,1) and
LN(2,1), weibull: WB(2,1) and WB(5,2), gamma: G(1,6) and G(2,5), exponential:
EXP(1) and EXP(5), and chi-squared with 1 and 10 degrees of freedom: y3 and 3,
(see Tables 1, 2 for results). The simulation routines have been programmed in R
and are available on request.

The columns “NOUT” contain the mean of each measure (Harmonic, Geometric,
Median, adjusted Median and Arithmetic) computed based on the 10,000 Monte
Carlo samples. Thus, for each sample we compute all the five central tendency
measures, resulting in 10,000 different values per measure. Next, the mean of each
measure is computed and is shown in columns “NOUT”. After simulating the data,
we manually introduce one, two, three, four, five and ten severe outliers in the
samples with sizes 10, 20, 30, 40, 50 and 100, respectively, randomly replacing the
original observations with the value: xso = Q3 + 3 X IQR, the usual threshold for
severe outliers, where Q3 and IQR are the third quartile and the inter-quartile range,
respectively. The mean of the measures computed “with outliers” is shown in the
columns “OUT”.

As can be seen in Tables | and 2, the value of the adjusted median is always
between the geometric/median and the arithmetic average, confirming its interme-
diate position. Thus, being closer to the arithmetic average also accommodates the
outlying observations, without exacerbating its effect on the final result. The
distributions, with the exception of the symmetric B(3,3), are all asymmetric
positive and become even more asymmetrical when severe upper outliers are
introduced. These conclusions are based on the “SK” estimates resulting from the
proposed measure in (18), which are almost zero for B(3,3) and positive for the
remaining distributions. The value of the estimates also increases with outlying
observations, pointing to an even longer right tail.

To confirm that outlying observations do not affect the median, harmonic and
geometric means as they do with regard to the arithmetic average, we compare the
simulation results without (“NOUT”) and with (“OUT”) outliers. As can be seen,
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whereas the harmonic mean has a small increase (or remains more or less constant),
and the median and geometric averages show a moderate increase, the arithmetic
average increases sharply. Thus, the outliers strongly affect the arithmetic mean,
modestly affect the median and geometric mean, and have a small impact on the
harmonic mean.

The simulation results also indicate that the adjusted median’s increase is higher
than those of the median, harmonic and geometric means, giving more weight to the
outlying data points. At the same time, it is smaller than that of the arithmetic mean,
confirming that the adjusted median can be used to represent the central tendency of
a distribution as an alternative to the median, geometric and arithmetic means in the
presence of outlying observations.

5 S&P 500 Information Technology

To compute and compare the measures based on real economic data, we used the
daily stock price of 56 companies listed in the sector “Information Technology” of
Standard and Poor’s 500 (S&P 500(7)). The data set includes the daily stock prices
of Microsoft, Apple, Amazon, Google, among many other companies.

5.1 The Adjusted Median in the Central Tendency

Figures 1 and 2 show the histograms of the stock prices including and excluding
two outlying observations (the two companies with the highest price are Amazon
and Google). The vertical lines correspond to the value of the means, median and
adjusted median and their position is determined by its value (see Table 3). The
number of companies in each interval is shown at the top of each column (for
example, there are 21 companies with price between 100 and 200).

In both cases, the center seems to be in the interval 100—200. When Amazon and
Google are included, neither the harmonic nor the arithmetic averages seem
appropriate to represent the central tendency of the distribution. From the other
three measures (geometric, median and adjusted median) the latter deviates to the
upper limit of the interval (200) reflecting also the extreme observations to the right
of the distribution. When the outliers are removed, the adjusted median is very close
to the median, but is higher than the harmonic and geometric averages, reflecting the
positive asymmetry that still remains. Therefore, it appears to remain appropriate to
represent the center of the distribution. As the value of the adjusted median is not
influenced as much as the arithmetic average, the outlying observations can still
contribute to representing the center of the distribution without it deviating too
much from the other central tendency measures.

Table 3 presents descriptive statistics for companies of the S&P 500 Information
Technology sector. The asymmetry and kurtosis is, as expected, substantially
reduced when the two extreme prices are removed. The harmonic mean and the
median are relatively constant, demonstrating their resilience to extreme

7 The data source is: https://www.tradingview.com. Prices refer to June 30, 2020.
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Fig. 1 S&P 500 Information Technology with AMAZON and GOOGLE. HA harmonic, GA geometric,
AA arithmetic averages, MED median, aMED adjusted median
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Fig. 2 S&P 500 Information Technology excluding AMAZON and GOOGLE. HA harmonic, GA
geometric, AA arithmetic averages, MED median, aMED adjusted median
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Table 3 Descriptive statistics of

daily stock price Statistic All No outliers
Harmonic Average (HA) 86.53 83.57
Geometric Average (GA) 133.30 120.45
Median (MED) 137.46 136.34
adjusted Median (aMED) 194.73 143.09
Arithmetic Average (AA) 231.19 160.24
Minimum 16.35 16.35
Maximum 2758.82 468.87
Skewness 5.00 1.11
Kurtosis 29.72 3.61
# Companies 56 54

observations. The reduction in the geometric mean is not as high as in the adjusted
median and arithmetic average. With regard to the adjusted median, it lies between
the median and arithmetic average, giving more weight (when compared to the
median, geometric and harmonic means) to the higher stock prices (as preciously
seen, the harmonic mean gives the least weight to higher data points). As it is still
far from the arithmetic mean (especially when Amazon and Google are included),
the adjusted median is less influenced by outlying observations when compared to
the arithmetic mean.

The traditional ways to deal with outliers is to remove them or to compute central
tendency measures robust to outliers. Should we exclude those two companies or
should we give them a very low weight when we compute the average of technology
stock prices? In economic terms, maybe neither would seem to be a reasonable
decision because Amazon and Google are third and fifth in the list of the 10 largest
components of the S&P 500. Thus, an alternative way could be to keep the two
companies in the data set and compute a measure that does not penalize the higher
observations as much as the median, harmonic and geometric means. The adjusted
median fits this purpose because although the influence of higher data points is not
as high as in the arithmetic average, it does, nevertheless, give more weight to the
higher observations than the other three measures.

5.2 Bootstrapping Confidence Intervals

The bootstrap sample comprises the 56 companies listed in the sector “Information
Technology” of Standard and Poor’s 500. The data set includes the daily stock
prices of Microsoft, Apple, Amazon, Google, among many other companies. The
statistics of interest are the harmonic, geometric and arithmetic averages, median
and adjusted median, and “sk”, the simple skewness statistic defined in (18). The
bootstrap is used to compute a 95% confidence interval for each measure. The R
code to run the bootstrap is presented as follows:

bootfunc < - function(data, indices) {
dt < - datal[indices, ]
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c( hm _mean(dt[, 1]),
gm_meanlog(dt[, 1]),
median(dt[, 1]),
adj_median(dt([, 11)[[111,
mean(dt[, 11),
adj_median(dt[, 11)[[2]11 ) }
datal < - data.frame (DataFile)
library (boot)
myBootstrap <- boot (datal, bootfunc, R=10000)
myBootstrap

boot.ci (myBootstrap, index=1)
boot.ci (myBootstrap, index=2)
boot.ci (myBootstrap, index=3)
boot.ci (myBootstrap, index=4)
boot.ci (myBootstrap, index=5)
boot.ci (myBootstrap, index=6)

The results are shown in Table 4. As can be seen, the limits of the confidence
intervals for “sk”, are all positive, with the exception of the one resulting from the
Accelerated bias-corrected method, where the lower limit is slightly negative. Thus,
the distribution of stock prices is asymmetric positive and the estimates for “sk”
also increase with the inclusion of Amazon and Google prices, the two upper outlier
observations, pointing to an even longer right tail (see Figs. 1, 2).

We can also confirm that the two outlying observations do not affect the median,
harmonic and geometric means in the way they affect the arithmetic average. Next,
we compare the results without and with the two largest prices. Whereas the limits
of the confidence interval for the harmonic mean and median have a small increase,
and the ones for the geometric mean increase moderately, the limits for the
arithmetic average increase sharply, especially the upper limit. Thus, the two
extreme prices strongly affect the arithmetic mean, modestly affect the geometric
mean, and have a small impact on the harmonic mean and the median.

The empirical results also confirm that the limits of the confidence interval for the
adjusted median (aMED) react more strongly with the inclusion of the two outlying
prices: the increase in the limits is higher when compared to those of the median,
harmonic and geometric averages, giving more weight to the outlying data points,
but it is not as exacerbated as in the arithmetic average. Thus, the intermediate
increase also accommodates the outlying data points, confirming the usefulness of
the adjusted median as an alternative to the traditional measures, with regard to
representing the central tendency of a distribution in the presence of outlying
observations.
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6 Conclusions

The average value of a data set is, possibly, the most common statistical idea
encountered in everyday life. When asked to compute an average, many students, as well
as practitioners, assume the arithmetic mean is what is called for. However, and very
often, they are not aware that better alternative approaches are available to capture the
central tendency of a distribution, namely the geometric and harmonic means.

In this paper we revisit the three traditional averages, highlighting their strengths
and weaknesses. The arithmetic average is strongly influenced by outlying
observations, while the harmonic and geometric means are insensitive to outliers,
which can obscure large values that may be consequential. An alternative way is to
find a measure that does not penalize the higher observations as much as the harmonic
and geometric means.

To overcome the drawbacks of traditional averages, we propose the adjusted
median (aMED). The aMED does not penalize the higher data points as much as the
median, harmonic and geometric means, and it gives substantially less weight when
compared to the arithmetic average. Thus, aMED is an intermediate solution for
dealing with outlying observations.

In a Monte Carlo simulation study, we have shown that aMED lies between the
median and the arithmetic average, reinforcing our purpose of giving greater weight to
higher data points.

To compute and compare the measures based on real economic data, we use the daily
stock price of 56 companies listed in the sector “Information Technology” of the S&P
500. The data set includes Amazon, Google, Microsoft and Apple, among many other
companies. We show that aMED represents the center of the daily stock price
distribution, giving an intermediate weight to the outlying observations, when compared
to the traditional central tendency measures.

A Contributions of Each Data Point

See Eq. (5):

=
=

[T =
=

zn: Xi )iy Xi
=1 |Xi Z:‘l:l xl‘Z?lel,- ’

_2": 1 1 n 1 T 1 n
Xty Xy ik Mimiy limin

if Xi er-lzl Xi 7é 0.
See Eq. (7):
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wi L x5 Y 1
X; = X; 7 = =
l Z:’:I Wi l Z:’:lxi + Zi;lx’ o+ Z:’:le Xi Z?:l xiz:’:I )%, Z?:l )%,,
X1 X2 Xn
if Xi er-lzl Xi 75 0.

B Averages Inequalities

According to the means definition, see Eqgs. (1), (2) and (3), their logarithms are:

ln<%ilzllX,->, In(X, Zln ) and In(Xp) = ln<%i)%>

i=1

By Jensen’s inequality,
1 n l n
In{=>"X | ==Y In(x,
i3 i3
which can be exponentiated to give the arithmetic mean-geometric mean inequality:

1< n ;]7
— Xi Z X,' y thus X X
N —

Q=4

X Xo

Now comparing the harmonic with the geometric mean (and by Jensen’s
inequality):

1n<lz ><——Z]n( ):%iznl:ln()()

=1

and by exponentiating both sides:

1
n

Znn T S (HX,) s thus XH SXG

i=1X, i=1
—_—— —
XH (,

Xe

C Different Meanings of the Center

Median

Consider a first data set: 4, 6, 10, 100 (n = 4, even). Thus, the median rank is
ry =13% =25, the median is XM 6410 — 8 and S, (r; —rm) = (1 —2.5) +
(2- 25) 3-25)+4-25)=
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For a second data set 4, 6, 10, 20, 100 (n =5, odd), the median rank is
rw =143 =3, the median is Xy = 10 and 3, (i —ry) = (1 —3) +(2-3) +
(3— 3) 4+ (4 —3) + (5 — 3) = 0. Thus, the median is the center of the distribution
in terms of the counting observations: one half of the observations is on the left and
one half is on the right of the median, no matter the value of the observations.

Arithmetic average

Consider again the second data set: X4 = w = 28 and

S5 (i — X4) = (4 —28) + (6 — 28) + (10 — 28) + (20 — 28) + (100 — 28) =0 .

Thus, the arithmetic average is the center of the distribution in terms of the
deviations in absolute terms: the arithmetic mean is such that the absolute deviations
on its right is compensate by the absolute deviations on its left. So, the center is
defined in terms of the absolute deviations (or distances) between each value and the
arithmetic average:

(4 — 28) + (6 — 28) + (10 — 28) (20 — 28) + (100 — 28) .
———— e e —

—24 -22 —18 -8 +72

=72

Geometric average
For the second data set: Xg = V4 x 6 x 10 x 20 x 100 = 13.69 and

Xi In(x;) In(x;) — In(Xg)
1.386 — 123.00%

6 1.792 — 82.45%

10 2.303 — 31.37%

20 2.996 37.94%

100 4.605 198.89%
sum 0

Compounding percentage deviation means that:

4 =13.69 x exp(—123%), ..., 100 = 13.69 x exp(198.89%).

Thus, the geometric average is the value that balances the negative percentage
deviations with the positive ones.
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Harmonic average

- — o
Xi Xi — Xu w; = 1/x; ST (v — Xun) <ZL w’)
— 4.671 0.250 0.434 —2.025
6 —2.671 0.167 0.289 —0.772
10 1.329 0.100 0.173 0.231
20 11.329 0.050 0.087 0.982
100 91.329 0.010 0.017 1.584
0.577 1 0

Thus, the harmonic average defines the center of the distribution in order that the
weighted deviations on its left compensate the weighted deviations on its right. The
weights are inversely proportional to the original values.
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