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Abstract Did the pattern of US stock market volatil-
ity change due to COVID-19 or have the US stock
markets been less volatile despite the pandemic shock?
And as for tech stocks, are they even less volatile than
the market overall? In this paper, we provide evidence
in favor of a “quietness” in the stock markets, inter-
rupted by COVID-19, by analyzing dispersion, skew-
ness and kurtosis characteristics of the empirical dis-
tribution of nine returns series that include individual
FATANG stocks (FAANG: Facebook, Amazon, Apple,
Netflix and Google; plus Tesla) and US indices (S&P
500, DJIA and NASDAQ). In comparison with the
years before, the daily average return after COVID-
19 was 6.48, 2.58 and 2.34 times higher for Tesla,
Apple and NASDAQ, respectively. In terms of volatil-
ity, the increase was more pronounced in the three stock
indices when compared to the individual FATANG
stocks. This paper also puts forward a new methodol-
ogy based on semi-variance and semi-kurtosis. While
the value of the ratio between semi-kurtosis and kur-
tosis is always higher than 70% for the three US stock
indices, in the case of stocks the opposite is true, which
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highlights the importance of large positive returns when
compared to negative ones. Structural breaks and con-
ditional heteroskedasticity are also analyzed by con-
sidering the traditional symmetrical and asymmetri-
cal GARCH models. We show that in the most recent
past, despite the COVID-19 pandemic, the FATANG
tech stocks are characterized mostly by conditional
homoskedasticity, while the returns of US stock indices
are characterized mainly by conditional heteroskedas-
ticity.
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1 Introduction

Since the 2008 subprime mortgage crisis, the US stocks
and indices have begun a remarkable recovery, giving
rise to the longest bull market in the history of the US
financial markets. As can be seen in Fig. 1 the S&P 500!
achieved its minimum (676.53) in March 9, 2009, and
from there it has almost always been going up.

This stunning growth is evident from the numbers
in Table 1. The stock price of Netflix, for example,
grew 9617.3% in 11 years giving rise to a remarkable
51.6% geometric average annual return. High growth
rates also characterize other US stocks and indices.

1 US indices: Standard & Poor’s 500 (S&P 500), Dow Jones
Industrial Average (DJIA) and NASDAQ Composite.
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Table 1 Growth of US stocks and indices
Index/stock Prices Growth
09/03/2009 18/12/2020 Total (%) Average (%)
S&P 500 676.53 3709.41 448.3 16.7
DITIA 6547.05 30179.05 361.0 14.9
NASDAQ 1268.64 12755.64 905.5 23.3
AMAZON 60.49 3201.65 5192.9 43.4
APPLE 2.56 126.66 4847.7 42.6
NETFLIX 5.50 534.45 9617.3 51.6
GOOGLE 144.50 1731.01 1097.9 253

And with regard to volatility, what has been hap-
pening in the most recent past? Before 2020, there was
a “quietness” in the stock markets occasionally inter-
rupted by short stressful periods of increasing volatility.
However, the market quickly recovered and returned to
its upward trend. The Fed’s predictable policy is one
reason experts give as to why stock-market volatility
has been historically low. And, indeed, over the past
few years, Fed policy has been cautious and relatively
predictable.

In 2018 and 2019, with the US economy humming
along and interest rates no longer so close to zero, the
case for strong forward guidance regarding future pol-
icy actions was becoming less compelling. According
to John Williams, in his first speech as President of the
New York Fed, it was not so clear as before whether
interest rates should go up or down; and explicit for-
ward guidance, or promises about how the Fed will
behave, would no longer be appropriate. Thus, with
the future direction of policy apparently being less
clear than during the previous few years, there would
be more uncertainty and volatility in the stock mar-
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kets,2. Despite this, however, US stocks and indices
had reached new historical highs by the end of 2019.

The year 2020, particularly March of that year, was
characterized by unusual variations in stock prices,
which led to a period of extremely high volatility.
This was due, however, to the spread of COVID-19
worldwide,? and not because of a Fed policy change.
As can be seen in Fig. 1, the Chicago Board Options
Exchange (CBOE) Volatility Index (VIX), a popular
measure of the stock market’s expectation of volatility
based on S&P 500 index options, achieved its 82.69
highest value in March 16. Bearing in mind that VIX
values greater than 30 are commonly associated with
high instability, values below 20 clearly correlate to
less distressing times in the financial markets.

After the intervention of Governments and Central
Banks, with stimuli of billions of dollars and euros,
the capital markets calmed down after March, 2020

2 Greg Robb at https://www.marketwatch.com/ September 28,
2018, for details.

3 Consequences of COVID-19 in terms of risk and uncertainty
are well documented in [43] due to the increase in the number of
hospitalizations, morbidity or over mortality.
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(the VIX quickly returned to pre-COVID levels), which
poses another million dollar question for financial ana-
lysts and investors: are these recent stable market con-
ditions able to continue or can a new stressed regime of
volatility be expected to arise in the near future? Could
the severity and frequency of the swings seen on Wall
Street last year (the markets have not seen moves this
wild since the subprime mortgage financial crisis) be
here to stay or are they just a brief period of turmoil and
the calm will return soon with the economic recovery?
Thus, the question “To keep faith with homoskedastic-
ity or to go back to heteroskedasticity?” would seem to
make sense.

As noted early in the seminal papers of [29] and
[15], financial time series vary systematically with
time, showing periods of enormous unpredictability
and volatility, followed by times of low instability.
Regardless of these early investigations, and the impor-
tance of modelling and forecasting volatility in finan-
cial markets (see, for instance, [30]), efforts to model
volatility dynamics were only developed in the later
decades of the twentieth century. Up until then, the
homoskedasticity of errors had been assumed in tradi-
tional econometric models, i.e., the focus of financial
time series modelling was the conditional first moment,
neglecting any temporal dependencies in the higher-
order moments.

The volatility of financial assets has been extensively
studied for the last thirty years, since the seminal papers
of [13] and [4] were published, and remains a hot topic
of investigation due to its importance for investors,
financial analysts and academics. Volatility modelling,
and especially volatility dynamics, is important for
decision-making in financial markets involving deriva-
tive prices, bonds, leverage ratios, credit spreads and
portfolio decisions. Recently, using data from 50 coun-
tries, Xue [53] investigates the effect of financial sec-
tor development on growth volatility. The empirical
results show that broadly speaking, while the aggre-
gate growth volatility declined from 1997 to 2014,
growth volatility in the most developed countries was
much smaller than in other countries. [41] investigated
the determinants of six euro area sovereign bond yield
spreads between June, 2006 and January, 2017, by esti-
mating original Panel-GARCH models, incorporating
key stylized features of volatility dynamics, such as
extreme persistence, asymmetry [32] and risk premia
effects. They found, in accordance with the financial
literature, significant and considerable volatility persis-

tence, despite the presence of asymmetric effects on the
volatility process being seemingly negligible. Empiri-
cal evidence from [42]’s analysis of the spillover effects
in interbank money markets shows that money markets
are profoundly interrelated, displaying dynamic cross-
market impacts. Besides, they highlight the pertinence
of conditional covariances, showing that the volatil-
ity spillovers are time-varying and strongly related to
major economic events, increasing during periods of
higher uncertainty. This supports the need to closely
monitor the evolution of money markets.

Not so recently, but still focusing on volatility, [36]
examined volatility spillovers between oil prices and
emerging economies. Their significant results show
the weak integration of the Chinese financial mar-
kets, energy markets and the US stock market. At the
same time, the Brazilian, Indian and Russian markets
were found to be more sensitive to international shocks
resulting from US markets, and also to the instability of
prices in the energy markets, particularly with regard
to oil price uncertainty.

Due to changes in volatility, Rapach and Strauss
[40] examined the importance of structural breaks in
exchange rate volatility by means of in-sample and
out-of-sample tests. The results indicate the presence of
structural breaks in the unconditional variance of seven
out of eight US dollar exchange rate return series over
the 1980-2005 period. This would suggest unstable
results, with GARCH(1,1) estimates frequently shift-
ing across subsamples as a result of the structural
breaks, and particularly impacts volatility persistence
over time.

Structural breaks in volatility have also been tested
and considered by [8,50,54], among many others.
Using daily data for six major international stock
market indices and a modified EGARCH specifica-
tion, Curto et al.[8] analyze the relationship between
stock market returns, volatility and trading volume
by proposing a new nonlinear conditional variance
model with multiple regimes and volume effects (MS V-
EGARCH). By using the Harvey—Newbold test for
multiple forecast encompassing, they show that the
more complex MSV-EGARCH threshold structure
dominates the competing standard asymmetric models
(GJR and EGARCH) in terms of forecasting ability,
for several of the considered stock indices. Smith [50]
compares the ability of traditional diagnostic tests to
detect various sorts of breaks in GARCH models. The
results show that the robust LM tests proposed by

@ Springer



4120

J. D. Curto

Wooldridge [55] have no power to detect structural
breaks in GARCH models. When CUSUM- and LM-
based structural break tests are considered, the results
point to an excellent size when the data is Gaussian.
However, while the CUSUM tests tend to over-reject
in fat tails returns, whatever the sample size, the LM-
based tests show approximately the correct size, and
that the power to detect various sorts of breaks in the
dynamics of conditional volatility is very high. Wen
et al. [54] analyzed the interaction between oil prices
and the US dollar exchange rate. The results indicate
that ignoring structural breaks can increase the negative
volatility correlation between the oil price and USD
exchange rate markets, and have a particular impact
during the financial crisis. Shen et al. [48] studied the
volatility of the Bitcoin cryptocurrency highlighting the
importance of jumps and structural breaks in forecast-
ing its volatility. In the out-of-sample analysis, they
found that the HARQ-F-J model is the best one, which
shows the importance of the temporal variation and
squared jump components at different time spans.
More recently, the COVID-19 pandemic triggered a
number of new research papers, in line with ours, aimed
at assessing the impact of corona virus on the volatil-
ity of financial asset returns. By using an extended
GARCH-MIDAS model and a newly developed Infec-
tious Disease Equity Market Volatility Tracker (EM V-
ID), Bai et al. [2] investigate the effects of COVID-19
on the volatility of the stock markets of the USA, China,
the UK and Japan through January 2005 to April 2020.
The empirical results show that, with an up to 24-month
lag, the infectious disease pandemic has had significant
positive impacts on the permanent volatility, even after
controlling for several factors, namely the influence of
past realized volatility, global economic policy uncer-
tainty and the volatility leverage effect. Salisu and Vo
[45] assessed the relevance of health-news trends in the
predictability of stock returns. The results show that
the model incorporating the health-news index outper-
forms the benchmark historical average model, high-
lighting the importance of health news as a good pre-
dictor (due to its significance) of stock returns since the
emergence of the pandemic. Sadefo et al. [47] found,
based on the Asymmetric Power GARCH model, that
COVID-19 is having a substantial negative impact and
reduces the US and Japan’s market returns. Moreover,
the influence of COVID-19 on the stock market vari-
ance of the USA, Germany, and Italy is greater in com-
parison with the Global Financial Crisis of 2008.

@ Springer

This small selection of papers illustrates how the
volatility of financial asset returns remains a very
important investigation topic in finance. This being
so, and due to the lack of empirical analyses involv-
ing FATANG stocks, the motivation of this study is
to address (in accordance with the expected structural
breaks in volatility) how the three main stylized facts
of returns volatility [7]: clustering-ARCH effect, per-
sistence, and asymmetry of the FATANG stocks, have
evolved (and changed) over time when compared to the
stock markets in general, represented by the S&P 500,
NASDAQ and DJIA US indices (see Sect. 3 for a brief
description of data). We focus mainly on before and
after the COVID-19 shock in 2020.

The contribution is fivefold, theoretical and empiri-
cal. First, we expand the acronym FAANG to FATANG
by including the Tesla stock. To the best of our knowl-
edge, this is the first time that this new acronym is used.

Second, a new methodology based on semi-variance
and semi-kurtosis (Sect.?2) is proposed and described
to compare the two sides of the returns mean and to
distinguish between risk and uncertainty; a new indi-
cator based on semi-kurtosis is proposed to evaluate the
downside risk. Traditional measures (value-at-risk, for
example) only consider the most extreme observations
in the left tail of the empirical distribution, disregard-
ing most of the negative variations when assessing risk.
Thus, by comparing the two sides of the returns mean
(which is close to zero), we take into account all the
negative returns, thereby providing a simple but more
informative measure of risk. When compared to the
standard deviation, the new measure is also more suit-
able in case of asymmetrical distributions (a common
characteristic of financial data). This is our main theo-
retical contribution. See Sect. 4 for empirical results.

Third, there are many studies that do not consider the
effects of structural breaks in volatility on GARCH esti-
mation. Thus, before estimating the GARCH, GJR and
EGARCH models, we test for the existence of struc-
tural breaks in the unconditional variance of returns
of the nine series under analysis. The novelty here
resides in the use of the PELT algorithm (which is not
so common in finance) to detect the structural breaks.
Although the results are similar to those resulting from
the traditional modified version of the iterated cumula-
tive sum of squares (ICSS) algorithm, the advantage
of PELT is that it can be used directly through the
changepoint R package.
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Fourth, as we expect that some characteristics of the
empirical distributions will have evolved (and changed)
over time, especially after the United States subprime
mortgage crisis and the COVID-19 pandemic, and to
notice the temporal changes, all the measures were
computed over a rolling window encompassing the
previous year of daily observations (T = 250). This
dynamic form of analysis is also new compared to most
other empirical studies (see Sect. 4 for results).

Finally, the empirical results are surprising and point
to a “quietness” in the US stock markets that was
only momentarily interrupted by COVID-19. The con-
ditional heteroskedasticity is more evident for stock
indices, with the ARCH effect having declined in the
most recent past (the exception being the year 2020),
especially in the case of FATANG stocks (see Sect.5
for results and discussion).

2 The methods

To answer the question “To keep faith with
homoskedasticity or to go back to heteroskedastic-
ity?” we started by computing descriptive statistics
(mean, standard deviation, skewness and kurtosis) over
a rolling window encompassing the previous year of
daily observations (T = 250), to notice the tempo-
ral changes. ANOVA, Kruskal-Wallis and Levene tests
are used to compare means, distributions and variances
of returns between different periods. A simple linear
regression was also estimated in order to reach a con-
clusion regarding the linear relationship between the
means and variances of returns (see Sects. 4.1 and 4.2).

A new methodology based on semi-variance and
semi-kurtosis was proposed, and is described below
(see Sect.2.1), to compare the two sides of the mean
and to distinguish between risk and uncertainty. The
empirical results appear in Sect.4.2.

Existent econometric methodologies are also used.
To draw conclusions with regard to the autocorrela-
tion of returns, absolute returns and square returns over
time, the Ljung—Box (LB) test for up to the tenth-order
serial correlation was computed over the rolling win-
dow process. The Lagrange multiplier test [13] was
used to formally test the presence of conditional het-
eroskedasticity and the evidence of ARCH effects. An
ARMA(4,0) model was estimated, primarily to pre-
filter the data from linear dependency. See Sect.4.3.

The econometrical approach is detailed next in
Sect.2.2, and empirical results appear in Sect. 5.

2.1 Semi-variance and semi-kurtosis

In Sect. 4.2, we show that when the individual FATANG
stocks are considered, the estimates of skewness can be
either positive or negative and the peaks of kurtosis are
also explained by large positive returns leading to the
positive spikes of the coefficient of skewness. Thus,
large positive returns also inflate the kurtosis in the
case of FATANG stocks. This empirical evidence has
important consequences in terms of risk analysis. Vari-
ance (as a measure of volatility) and kurtosis increase
mainly due to large negative returns (indices) and also
to large positive returns (stocks). However, only the for-
mer represent an increase in risk, because the chance
of selling the asset at a lower price (below its purchase
price) is higher. If an asset receives a large positive
return, the event is considered an increase in uncer-
tainty but not in risk. Both large negative and positive
returns produce an increase in variance and kurtosis
because while they equally take into account move-
ments in either tail of the distribution, only those on
the left side are undesirable [19]. Thus, it is important
to separate the “bad” volatility and kurtosis from the
“good”, as the former represents risk, while the latter
only represents uncertainty.

Leto? = Z[TLI (r—)* and K ~= ZzT;1 (r—)*~
represent the downside of the variance and the coeffi-
cient of kurtosis, respectively: all the observations that
fall below the mean. If we divide >~ and K~ by T
and To*, respectively, we get the semi-variance [31]
and the semi-kurtosis (see [44] for an application). We
can also define the upside as o2 = ZtTil (re — )2t
and KT = ZtTil (r; — w)**, including all the obser-
vations that fall above the mean. With,

Ty 7 T

D= Y =t =)= w?,
=1 =1 =1

T b

D=t Y = wtt

=1 t=1

T
=Y (n—w*, withT =T+,
t=1
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obviously being the numerators of the variance and the
coefficient of kurtosis, respectively.

In order to evaluate the downside risk, we can divide
the semi-variance by the variance and the semi-kurtosis
by the kurtosis, respectively, giving rise to the following
ratios:
0¥ YL =

D Y CEO
K YL = wt

K Z;T:1 (ry — M)4
and both measures range between 0 and 1 (the extremes
are not included) and the risk decreases when the value
of the ratios goes to zero. (For values lower than 0.5,
the upside “dominates” the downside.) If the value is
0.5, the two sides are balanced and the distribution is
symmetric. The risk increases when the value of the
ratios is higher than 0.5. (The downside “dominates”
the upside.)

Ry =

Rk ey

2.2 Econometrical approach

The empirical distribution of a financial asset return
can be described as the sum of a predictable part with
an unpredictable part:

Vt:E[”t |¢t—l]+ut7 (2

where @;_; is the relevant information set up to,
and including, + — 1. For the conditional mean,
E [rt | @41 ], our first intuition was to assume a white
noise process, since the empirical distributions of
returns under study represent the most liquid and effi-
cient financial markets in the world—as far as equities
are concerned—and since this work is primarily dedi-
cated to the dynamics of the variance equation. How-
ever, anticipating our findings in the data analysis sec-
tion, we shall also specify the conditional mean equa-
tion as a fourth-order autoregressive process, AR(4),
in order to remove the observed linear dependency in
returns:

rr=c+Qiri—1 + $arr—2 + P3r1—3 + Pare—a + uy,
3)
where u; = z;0, and the standardized innovations (z;)
are assumed to be independently and identically dis-
tributed (i.i.d.) with student’s ¢ distribution [5]. This

statistical distribution has a long tradition in the econo-
metrics literature as a popular choice for a fat-tailed
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distribution, since it has a finite second moment (in
contrast to stable non-Gaussian distributions), its math-
ematical properties are well known, it is undemand-
ing to estimate, and is often found capable of captur-
ing the excess of kurtosis observed in financial time-
series. Other non-normal alternative distributions have
also been used in econometrical literature. Nelson [37]
proposed the generalized error distribution (GED), the
Laplace distribution has been employed in [18], and
[22] used both the student’s t and GED as distributional
alternative models for innovations. The stable Paretian
distributions have also been investigated by [9,27,35].

For the conditional variance of u;: E [u,2 | &, 1] =
ot2, we have considered the most popular conditional
heteroskedastic specifications: the symmetric GARCH
[4] and the asymmetric GJR [17] and EGARCH
[37] models to incorporate the leverage effect (see,
for example, [10,51]). As observed by [3], volatility
responds asymmetrically to the sign of any change in
the price of the financial asset, i.e., volatility increases
more after negative changes than after positive changes
of the same magnitude. This phenomenon has become
known to as the leverage effect (also referred as the
Fisher-Black effect).

In this study, via the estimation of asymmetrical
models, we want to test whether the leverage effect
is also a characteristic of FATANG stocks. We show
that in some periods of time, both positive and negative
news have the same impact on volatility, and yet have
no asymmetrical effect. The leverage effect, however,
is still present in all the stock indices analyzed.

Despite the theoretical interest of (p, ) models,
the (1, 1) specification is, in general, satisfactory when
modeling financial asset returns volatility (see [6] and
more recently [20]). Thus, in this paper all conditional
heteroskedastic models are of p = 1, ¢ = 1 order:

GARCH: o} = +a1ut2,1 + /31(7,2,1, 4)

Up— _
EGARCH: 11117,2 :a)+a1m +ylut—l + B lnatz_l,
o o

t—1 t—1
)
GIR: ol2 = w+a1u12_1 + It,lu,z_l +/310,2_], (6)

where w, a1,y and B; are unknown parameters,
L1 =1ifu_y <0and I, = 0if u,—; > 0.
The models are estimated through maximum likeli-
hood (MLE). Estimated models are compared based
on Bayesian information criteria [49].

Several studies have shown that structural breaks can
impact significantly on GARCH model estimation, and
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Table 2 Summary statistics of returns

Index/stock Starting date # Obs Mean Median Min Max St Dev Skew Kurt J-B

S&P 500 29/01/1985 9047 0.033 0.063 —22.900 10.957 1.163 —1.252 29937  0.000
DIJIA 30/01/1985 9047 0.035 0.058 —25.632 10.764 1.148 —1.596  41.728  0.000
NASDAQ 31/01/1985 9047 0.042 0.113 —13.149 13.255 1.397 —0.345 11.809  0.000
FACEBOOK 18/05/2012 2161 0.092 0.106 —21.024  25.937 2.342 0.335 18.058  0.000
AMAZON 15/05/1997 5939 0.125 0.049 —28.457  29.618 3.650 0.455 11.941 0.000
TESLA 29/06/2010 2637 0.189 0.116 —23.652  21.829  3.535 —0.033 9.039  0.000
APPLE 29/01/1985 9047 0.078 0.009 —73.125  28.689  2.834 —1.985 59.105 0.000
NETFLIX 23/05/2002 4677 0.130  0.035 —52.605 35.223 3.638 —0.876  26.289  0.000
GOOGLE 19/08/2004 4113 0.086 0.069 —12.340 18.225 1.915 0.453 12.130  0.000

Skew: Coeff. of skewness, Kurt: Coeff. of Kurtosis and J-B is the p value associated with the Jarque—Bera test

that neglecting structural breaks has important conse-
quences. First, the degree of persistence in the volatil-
ity of returns can be overstated [21,28,33]. Secondly,
[33,34,38] show that structural breaks can give rise to
spurious evidence of long-range dependence or long
memory in financial volatility data. Thirdly, in out-
of-sample volatility forecasting, the use of an expand-
ing data window (or a fixed data window) is unlikely
to perform well in the presence of sudden structural
breaks in volatility [40]. Thus, before estimating the
GARCH, GJR and EGARCH models, we first tested
for the existence of structural breaks in the uncondi-
tional variance of returns of the nine series under anal-
ysis. These, according to Rapach and Strauss [40], are
equivalent to structural breaks in the parameters of the
GARCH processes governing the conditional volatility
of returns.

To identify structural breaks in the volatility of the
nine returns series, we applied a modified version of the
[23] iterated cumulative sum of squares (ICSS) algo-
rithm that allows for the dependent processes proposed
by Rapach and Strauss [40]. The algorithm is used to
test for (potentially multiple) structural breaks in the
unconditional variance of daily returns for the nine
series under study. For more details about the ICSS
algorithm, see also [11,25,26,46], for example. The
PELT algorithm [24] was also used, and the results
were similar. The advantage of PELT is that it can be
used directly through the changepoint R package.
Thus, the samples are divided into distinct periods.

In this study, testing for the presence of structural
breaks in volatility has two main objectives. Firstly, did
the COVID-19 pandemic result in a structural break
for all the returns series, or just for some? We show

that no changes in volatility have occurred for some of
the FATANG stocks, which would indicate conditional
homoskedasticity. Secondly, we wanted to analyze how
the three stylized facts of the returns’ volatility [1]:
clustering, persistence, and asymmetry have evolved
over time, and whether the differences are statistically
significant.

3 The data

The data sets we will analyze in this paper are the daily
closing prices and the continuously compound returns
of the three main US stock indices: S&P 500, DJIA
and NASDAQ, and six US stocks.* Five of the six,
under the acronym FAANG, refer to the stocks of the
five most popular and best-performing American tech-
nology companies: Facebook, Amazon, Apple, Netflix
and Alphabet (formerly known as Google). In this paper
we also include Tesla, and have changed the acronym
to FATANG. The starting date is not common to all
series (see Table 2 for details), but we try to cover as
lengthy a period as possible. For example, in the case
of FATANG stocks, prices go back to the first day each
company was listed on the New York Stock Exchange
(except Apple), with the end date being December 18,
2020.

We analyze the continuously compounded percent-
age rates of return (adjusted for dividends) which are
calculated by taking the first differences of the loga-
rithm of the series (P; is the closing value for each
index or stock at time 7):

re =100 x [In (P;) —In (P—p)]. 7

4 Data source is Yahoo Finance.
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Fig. 2 Daily absolute returns

Table 2 summarizes the basic statistical properties of
the data. All the results, with the exception of skewness
(which is positive for some series), comply with the
stylized facts of returns.

The means of return are all positive but close to zero.
(The higher means correspond to the FATANG stocks.)
The distribution of returns appears to be somewhat
asymmetric as reflected by the negative and positive
skewness estimates. All the series returns have heavy
tails and strongly depart from normality (skewness and
kurtosis coefficients’ are all statistically different from
those of the Normal distribution which are 0 and 3,
respectively). The Jarque—Bera normality test statistic
is far beyond the critical value (the p—value is almost
zero) which suggests that 7; is far from a normal distri-
bution for all series.

Figures2 and 3 plot the two most popular volatil-
ity measures regarding the financial asset return: the
absolute value and the square of returns (|r;| and r,2)
[19]. We can observe the long run behavior of daily |r;|

5 From now on we just refer skewness and kurtosis.
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and 2, where we can clearly confirm the observation of
[29] and [15] that large shocks in financial asset returns
tend to be followed by large shocks (of either sign) and
small shocks tend to be followed by small shocks.

While market volatility constantly changes over
time, it is much higher at times of crisis such as, for
example, during the Black Monday stock market crash
of 1987, the Russian rouble financial crisis in 1998, the
dot-com bubble in which the Nasdaq Composite index
peaked in value on March 10, 2000, before crashing, the
United States subprime mortgage crisis that occurred
between 2007 and 2010, and the COVID-19 pandemic
in 2020.

In recent months, and indeed since March 2020
when the COVID-19 turmoil began, we have seen a
long period of quiet volatility, especially in the US stock
markets. Is this just a cooling-off period for volatil-
ity or are the financial asset returns going back to
homoskedasticity? To be able to answer this question
is one of the main purposes of this investigation.
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Fig. 3 Daily squared returns

4 Characteristics of the historical returns

The measures presented in Table 2 refer to the whole
period under analysis. However, our expectation is that
some characteristics of the empirical distributions will
have evolved (and changed) over time, especially after
the United States subprime mortgage crisis and the
COVID-19 pandemic. To notice the temporal changes,
all the measures were computed over a rolling window
encompassing the previous year of daily observations
(T = 250). Our first investigation topic relates to the
volatility, skewness and kurtosis of the empirical dis-
tribution of returns.

4.1 Mean and standard deviation

Have the stock markets been more profitable and less
volatile in recent years? And what is the position with
regard to the tech stocks? Are they even more profitable
and less volatile than the overall market? To answer
these questions, we computed the arithmetic average

and the standard deviation. In light of the rolling win-
dow process, the first value was computed based on the
first 250 observations over approximately one year, and
the last value, corresponding to December 18, 2020, is
the average and variance of returns in 2020. See Fig-
ures4 and 5.

As can be seen, the daily average return is mostly
positive (reflecting the trend of increasing prices) but
close to zero for all the series under analysis, and higher
for FATANG stocks. Due to the higher weighting of
these stocks in the composition of the index, the aver-
age return of NASDAQ is also higher in comparison
with S&P 500 and DJIA. From 2012-2019 to 2020,
there was an increase in the average return (except in
the DJIA)—with the ratio between the average returns
being higher than 1, pointing to a temporal increase
in 2020. However, the differences in the averages and
distributions (before and after 2020) are not statisti-
cally significant—the exception is Tesla, where the
daily average return was close to a stunning 0.864%
in 2020 (see Table 3 for ANOVA and Kruskal-Wallis
tests result). Thus, in spite of the COVID-19 pandemic,
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passing the previous year of daily observations (7" = 250). The
horizontal lines represent the mean of each series

there was an increase (although not statistically signif-
icant, with the exception being Tesla) in the daily aver-
age return for 8 of the 9 series under scrutiny. The daily
average return was 6.48, 2.58 and 2.34 times higher for
Tesla, Apple and NASDAQ), respectively. The excep-
tion is the DJIA, which has no tech stocks included. The
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other two stock indices (NASDAQ and S&P 500) also
reflect the good performance of FATANG and other
tech stocks during the pandemic period.

As expected, the peaks of volatility (measured by
the standard deviation) occurred during the most recent
crises in the financial markets: the 1987 Black Mon-
day crash, the 1998 Russian rouble financial crisis, the
2000 dot-com bubble, the 2008 subprime mortgage cri-
sis and the 2020 COVID-19 pandemic (see Figs.4 and
5). We can also observe a sharp decrease in volatility
during the years 2012-2019 regardless of the index or
the stock being considered. The results of Table 4 con-
firm that the variance of returns decreased sharply from
2012 to 2019, and increased significantly in 2020° (the
p value associated with the Levene test’ is in parenthe-
sis, indicating the rejection of the equality of variances).
In 2020, the increase in the variance of returns was
higher for the three stock indices (in the case of DJIA,
for example, the variance was 8.848 times higher than
its variance during the period 2012-2019) when com-
pared to the individual stocks. In the case of Netflix,
there was even a decrease in the variance of returns
when compared to the variance of the period before.
These results show that the increase in volatility was
more pronounced in the three stock indices when com-
pared to the individual FATANG stocks. Furthermore,
as the increase in the variance was matched by a cor-
responding increase in the mean, we can conclude that
positive returns more than compensate for the negative
ones. Thus, the increase in volatility does not necessar-
ily imply a higher risk, as we explain next.

Given these strong differences in volatility, in Sect. 5
we tested for the existence of structural breaks in the
unconditional variance of the returns series and the
results point to significant breaks.

Next, we also analyzed the relationship between the
mean and the variance of returns (per rolling window)
in the three periods considered before by estimating
the simple linear regression model: u; = o + ,30,2, +
&1, where the dependent variable is the mean and the
independent variable is the variance. Table 5 shows the
estimates for .

As can be seen, the estimates were mostly nega-
tive until 2019 (the exception being Tesla). In 2020,

6 As Facebook was only listed on the New York Stock Exchange
after 2012, the cut-off year was 2015.

7 With regard to departures from normality, the Levene test is
less sensitive than the Bartlett test.
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Fig. 5 Rolling window mean (AA) and standard deviation
(SD)—FATANG stocks The arithmetic average (AA) and the
standard deviation (SD) are computed over a rolling window

most of the estimates were positive (5 out of 8), the
estimates are not statistically significant® in two cases
(Apple and Google), and two estimates were nega-
tive (those of the S&P 500 and DJIA stock indices).

8 Due to potential autocorrelation, Newey—West HAC standard
errors are used.
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Thus, for most FATANG stocks (4 out of 6) the average
of returns increases with the variance; more volatility
seems to indicate greater profitability for most of the
financial assets under analysis, highlighting the bal-
ance between positive and negative returns, with the
first being supreme. Welcome volatility in US stock
markets!
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Table 3 Averages comparison before 2012, between 2012 and 2019 and after 2020
Dec/2011 2012-2019 Ratio 2020 Ratio ANOVA K-W

S&P 500 0.029 0.047 1.634 0.056 1.202 0.469 (0.494) 3.896 (0.143)
DIJIA 0.033 0.042 1.275 0.023 0.541 0.026 (0.872) 1.033 (0.597)
NASDAQ 0.033 0.061 1.860 0.144 2.336 1.726 (0.189) 9.361 (0.009)
FACEBOOK 0.113 0.075 0.664 0.121 1.625 0.009 (0.923) 0.361 (0.835)
AMAZON 0.122 0.118 0.967 0.224 1.906 0.047 (0.828) 0.687 (0.158)
TESLA 0.048 0.133 2.800 0.864 6.477 6.229 (0.013) 8.314 (0.016)
APPLE 0.070 0.088 1.246 0.226 2.580 0.448 (0.503) 2.675 (0.263)
NETFLIX 0.087 0.173 1.983 0.205 1.182 0.686 (0.408) 0.765 (0.682)
GOOGLE 0.100 0.071 0.707 0.105 1.486 0.085 (0.770) 2.262 (0.323)

K-W: Kruskal-Wallis test (p value is in parenthesis). Ratio is the division of average return between two periods. For example, the ratio
after column “2020” divides the average return for the year 2020 by the daily average return of the period 2012-2019. The columns
“Dec/20117, “2012-2019” and “2020” include the daily average return in each period

Table 4 Variances comparison before 2012, between 2012 and 2019 and after 2020

Until Dec/2011 2012-2019 Ratio 2020 Ratio Levene test
S&P 500 1.431 0.655 0.457 4.925 7.525 109.08 (0.000)
DITA 1.365 0.635 0.465 5.616 8.848 128.39 (0.000)
NASDAQ 2.135 0.938 0.439 5.248 5.598 84.59 (0.000)
FACEBOOK 8.737 3.193 0.365 8.606 2.695 61.66 (0.000)
AMAZON 19.202 3.459 0.180 5.985 1.730 243.99 (0.000)
TESLA 13.910 9.749 0.701 32.523 3.336 63.98 (0.000)
APPLE 9.611 2.604 0.271 8.830 3.391 178.23 (0.000)
NETFLIX 17.029 9.239 0.543 8.649 0.936 37.78 (0.000)
GOOGLE 5.033 2.123 0.422 6.021 2.836 79.67 (0.000)

Ratio is the division of the variance from two different periods. For example, the ratio after column 2020 divides the returns’ variance
of the year 2020 by the variance of the period 2012-2019. The columns “Until Dec/2011”, “2012-2019” and “2020” include the variance
for each period. Levene test p value is in parenthesis

Table S Mean-variance regression

Index/stock Until Dec/2011 2012-2019 2020

S&P 500 —0.0285%* —0.0365%* —0.0058%*
DIJIA —0.0298%* —0.0473% —0.0071%*
NASDAQ —0.025% —0.0449% 0.0076*
FACEBOOK —0.0028 —0.0295%* 0.0088*
AMAZON —0.0014%* —0.0248%* 0.0516*
TESLA 0.0414%* 0.0266* 0.0301*
APPLE —0.0119% —0.0685%* 0.0016
NETFLIX —0.0081%* —0.0131%* 0.0536*
GOOGLE —0.0258%* —0.0137%* —0.0004
Estimates for B in the simple linear regression model: ©; = o + /30,2, + &;, where p; and Urzt represent the rolling window mean

and variance. *Denote statistically significant at the 1% significance level, based on the p value associated with the corresponding ¢

significance test
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4.2 Skewness and kurtosis

Another common stylized fact of financial assets is that
large negative returns occur more often than equally
large upward movements, which leads to the negative
asymmetry of the empirical distributions [7]. In the
recent past, however, large positive returns have also
occurred. This has reversed the type of asymmetry,
especially regarding the FATANG stocks. In order to
test this empirical fact, a rolling window encompassing
the previous year’s daily returns was used to estimate
the coefficients of skewness and kurtosis. The results
are shown graphically in Figs.6 and 7.

As can be seen, when the stock indices are consid-
ered, most of the estimates of skewness are negative,
with only a few being statistically significant and posi-
tive. Furthermore, the peaks in the kurtosis are mostly
due to large negative returns, giving rise to the negative
spikes of the coefficient of skewness. Thus, the num-
ber of large negative returns exceeds that of positive
returns, leading to the negative skewness of the empir-
ical distributions. The conclusions are different when
the individual FATANG stocks are analyzed. The esti-
mates of skewness can be either positive or negative,
and the peaks of kurtosis are also explained by large
positive returns, leading to the positive spikes of the
coefficient of skewness. Thus, large positive returns
also inflate the kurtosis in the case of the FATANG
stocks.

The ratio (percentage) between the semi-kurtosis
and the kurtosis (see Sect.2.1), computed in accor-
dance with the 250-day rolling window method, is rep-
resented graphically in Figs.8 and 9). The horizontal
line represents 50%.

If we take the variance/standard deviation as a mea-
sure of risk, we conclude, based on Table 4, that
FATANG stocks are riskier when compared to the US
stock indices because the value is higher. However, as
one can see in Table 6, the value of the ratio is always
higher than 70% for the three US stock indices. Thus,
the downside “dominates” the upside in more than 70%
of the rolling windows. In the case of stocks, it is the
opposite, thus highlighting the importance of large pos-
itive returns as opposed to negative ones. Whereas the
volatility and kurtosis of Facebook, Amazon, Netflix
and Google stock returns represent more uncertainty
than risk, they represent more risk than uncertainty in
the case of stock indices. Thus, the indices seem to
be riskier when compared to this particular class of
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Fig. 6 Skewness and kurtosis—US indices

tech stocks. (In the case of Tesla and Apple, the ratio
between semi-kurtosis and kurtosis is still higher than
50% in more that 50% of the rolling windows, but less
than 20 percentage points when compared to the US
stock indices.) The chance to sell at a lower price than
their purchase price seems to be higher in the case of
stock indices. Thus, if the distributions are asymmetri-
cal, the ratio between semi-kurtosis and kurtosis seems
more suitable than the variance/standard deviation as a
measure of risk.

4.3 Autocorrelation analysis of the return series

It is well established that the serial correlation (or auto-
correlation) of financial asset returns is often insignifi-
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cant [16,19,52] giving empirical support to the weak-
form of the efficient market hypothesis (EMH), which
states that past returns cannot be used to predict future
returns. Thus, the returns are practically white noise
[19]. To conclude with regard to the autocorrelation
of returns, absolute returns and square returns over
time, the Ljung—Box (LB) test for up to the tenth-order
serial correlation is computed over a rolling window
encompassing the previous year’s daily observations
(T = 250). The evolution of the LB test value is rep-
resented graphically in Figures 10, 11 and 12. The hor-
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izontal line represents the critical value for a 1% sig-
nificance level: x7, = 23.20925.

As can be seen, and according to the Ljung—Box
statistic for returns, the autocorrelation seems not to
be relevant (in only a small percentage of windows is
the “no autocorrelation” null hypothesis rejected, the
exception being the NASDAQ composite index with
more than 20% of rejections; see Table 7 where the
number of rejections and the respective percentages are
shown). The autocorrelation structure of returns still
seems weaker in the case of individual stocks (in the
case of Tesla, for example, the number of rejections is
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very close to zero). In general, the rejection of the null
hypothesis is due to the statistical significance of the
positive first-order and negative second-order autocor-
relations. (This supports the so-called mean-reversion
behavior of stock market returns.) In spite of its signifi-
cance, the absolute value of the first- and second-order
autocorrelations is very small, suggesting that returns
(r¢) do have some memory, albeit a very short one, and

there is a portion of stock market returns that is pre-
dictable although it might be a very small one. There-
fore, the efficient market or random walk hypothesis
does not strictly hold [12].

Even though the series of returns seem to be weakly
correlated over time, the autocorrelation of absolute
and squared returns is stronger, pointing to a positive
autocorrelation over several days, which quantifies the
fact that high volatility events tend to cluster in time
[7]. However, the volatility clustering stylized fact is
not so evident for individual stocks, especially in the
cases of Facebook, Amazon and Netflix. The empirical
results seem also to confirm that sample autocorrela-
tions for absolute returns are greater than the sample
autocorrelations for squared returns.

Conditional heteroskedasticity of returns is a pos-
sible explanation for the large positive autocorrelation
between |r;| and r,z, i.e., the variance or conditional
variance is not constant, and it changes over time.
The ARCH type model is the most important class
of nonlinear time series model that is able to capture
some aspects of the time varying volatility structure.
The Lagrange multiplier test proposed by [13] can be
used to formally test the presence of conditional het-
eroskedasticity and the evidence of ARCH effects. The
LM test for a twelve-order linear ARCH effect is com-
puted over arolling window encompassing the previous
year’s daily observations (7" = 250). An ARMA(4,0)
model is first of all estimated to pre-filter the data from
linear dependency. Figures 13 and 14 show the tem-
poral evolution of the ARCH LM test for indices and
stocks. The horizontal line represents the critical value
for a 1% significance level: X122 = 26.22.

The ARCH-LM test results suggest, as is common
in empirical finance, that all the returns series under
analysis exhibit ARCH effects, inferring that nonlin-
earities should enter through the variance of the pro-
cesses [22]. ARCH or GARCH models can be used
to capture such behavior, by conditioning the volatil-
ity of the process on past information. In Sect.5, we
use the ARMA-GARCH models to describe the con-
ditional distribution of returns. However, it seems that
conditional heteroskedasticity is more evident for stock
indices, and the ARCH effect has declined in the most
recent past (the exception being the year 2020), espe-
cially in the case of FATANG stocks. Thus, in the most
recent past, market volatility did not change so sharply
over time, which brings us back to the question in the
title “To keep faith with homoskedasticity or to go back
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Fig. 9 Ratio of the semi-kurtosis in the kurtosis—FATANG stocks

to heteroskedasticity?”. In order to check this, we first
computed the number of 250-day windows where the
null hypothesis of the ARCH-LM test was rejected. The
results are shown in Table 8.

As can be seen, the percentage of rejections is
less than 20% in the case of FATANG stocks, and

@ Springer

around 40% in the case of US stock indices. Thus, the
returns of US stock indices are more conditionally het-
eroskedastic, while the FATANG tech stocks returns are
characterized mostly by conditional homoskedasticity.
In both cases, the percentage of rejections is lower
than 50%: the number of non-rejections of conditional
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Table 6 Number of ratios above 50%

Indices/stock # Ratio > 50% # Obs %

S&P 500 6608 9047 73.04
DIJIA 6630 9047 73.28
NASDAQ 6990 9047 77.26
FACEBOOK 986 2161 45.63
AMAZON 2350 5939 39.57
TESLA 1477 2637 56.01
APPLE 5132 9047 56.73
NETFLIX 2138 4677 45.71
GOOGLE 1671 4113 40.63

homoskedasticity assumption exceeds the number of
rejections. However, this raises a new million dollar
question: after the COVID- 19 turmoil, how long will
it remain like this?

5 Volatility clustering, persistence and asymmetry

As we mentioned previously, our main purpose is to
reach conclusions concerning the characteristics of
volatility over a long period (focusing mainly on the
last years), by comparing FATANG stocks with three
US stock indices. As the international financial mar-
kets are intermittently subject to shocks resulting from
global economics, wars, political events and investors’
decisions, these shocks can cause sudden breaks in the
unconditional variance of returns. These sudden breaks
are equivalent to structural breaks in the parameters of
the returns’ conditional volatility processes.

To identify and determine the structural breaks in
the volatility of the nine returns series, we computed
a modified version of the [23] iterated cumulative sum
of squares (ICSS) algorithm that allows for the con-
ditional dependent processes proposed by Rapach and
Strauss [40]. The PELT algorithm [24] was also used,
and the results are similar. The number of each obser-
vation where each break occurs and the exact dates of
the structural breaks are reported in Table 9.

The variances (“Var” in the table) are computed
for each of the sub-samples defined by (and up to)
the structural breaks identified by the modified ICSS
algorithm. As one can see, there is strong evidence of
structural breaks in the unconditional variance for all
the returns series, leading to distinct regimes in volatil-
ity. The ICSS algorithm selects six structural breaks in

the unconditional variance for the S&P 500 and DJTA
returns; five structural breaks for NASDAQ and Ama-
zon; four structural breaks for Apple and Google and
three structural breaks for Facebook, Netflix and Tesla.
As expected, the contemporaneity of structural
breaks occurs during the most recent crises in the finan-
cial markets: 1998 Russian rubble financial crisis, 2000
dot-com bubble, 2008 subprime mortgage crisis and
2020 COVID-19. The oldest crises did not reach some
of the FATANG stocks because they were not listed yet
at that time (see Table 2). The behavior of S&P, DJIA,
NASDAQ, APPLE and GOOGLE is very similar: after
subprime crisis the algorithm detected only one struc-
tural break due to COVID-19. Thus, they remained in
the same volatility regime for more than 10 years. The
last structural break for Netflix, Amazon and Facebook
was detected in 2013, 2017 and 2018, respectively. Net-
flix reached the lowest levels of volatility after 2013.
The unconditional variance in the sub-sample result-
ing from the penultimate structural break (in bold) is
smaller in comparison with the variance of most of
the other sub-samples. This also confirms the smaller
volatility in the years before February 2020, as we
pointed out previously. The variance increases sharply
in the last sub-sample (the exception being Netflix,
where there is even a decrease in variance), influenced
particularly by the higher volatility of 2020.
COVID-19 gave rise (in February 2020) to a new
volatility regime in S&P 500, DJIA, NASDAQ, Apple,
Google and Tesla. (The structural break is more or
less contemporaneous for the indices and these stocks.)
However, the increase in volatility was not enough to
change the regime in the returns volatility of Ama-
zon, Facebook and Netflix. (For these stocks, the last
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Table 7 Number of rejections of the null hypothesis in the Ljung—Box test
Indices/stocks e |re| r,2
# Rejections % # Rejections % # Rejections %
S&P 500 1158 13.16 4070 46.27 4105 46.66
DIIA 1188 13.50 4726 53.72 4220 47.97
NASDAQ 2138 24.30 5127 58.28 5209 59.21
FACEBOOK 259 13.55 736 38.51 396 20.72
AMAZON 199 3.50 1500 26.37 1194 20.99
TESLA 13 0.54 832 34.86 590 24.72
APPLE 657 7.47 2241 25.47 2052 23.33
NETFLIX 280 6.32 872 19.70 598 13.51
GOOGLE 426 11.03 1309 33.89 1043 27.00
S&P 500 DJIA NASDAQ
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Fig. 13 ARCH LM statistic—US Indices

break is very far from the COVID-19 shock.) It would
appear, therefore, that 50% of the FATANG stocks were
immune to the virus. Thus, we can bring up question
again: “To keep faith with homoskedasticity or to go
back to heteroskedasticity?”” Even for the six financial
assets with structural breaks in volatility, was COVID
just an accident and they will quickly return to the pre-
vious regime of almost constant variance?

Next, we analyzed the conditional distribution of
returns to get further clarification on volatility. We
estimated an ARMA(4,0) model for the conditional
mean in combination with the GARCH(1,1), GJR(1,1)
and EGARCH(1,1) models for the conditional variance
across the sub-samples that resulted from the struc-

Years

Years

tural breaks identified by the modified ICSS algorithm.
To better account for leptokurtosis, we consider the
Student’s ¢ distribution for innovations instead of the
standardized normal. The estimation results across the
sub-samples are shown in Tables 10 through 18. The
analysis of results will be divided according to the three
main stylized facts of the volatility of returns: volatility
clustering, persistence, and asymmetric effect.

We focused firstly on the ARCH-LM test results.
As can be seen, we rejected the null hypothesis of
the ARCH-LM test, indicating the existence of con-
ditional heteroskedasticity in most of the series and for
most of the sub-samples resulting from the structural
breaks. This conclusion confirms the stylized fact of
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the returns volatility clustering. However, among the
FATANG stocks the decision was not the same for all
the sub-samples. The stock returns of Facebook, Net-
flix (in all the sub-samples) Amazon, Apple, Tesla and
Google (in some of the sub-samples) were character-
ized by conditional homoskedasticity. Furthermore, in
the case of Google and Tesla, and for recent years, con-
ditional homoskedasticity was rejected only in the sub-
sample that includes the COVID-19 turmoil. Before
that, and for long periods of time, the null of the ARCH-
LM test was not rejected. Thus, the suspicion of con-

@ Springer

Years Years

stant variance of returns is more evident among the
FATANG stocks, which calls into question the exis-
tence of volatility clustering.

And what about volatility persistence? According to
[14],in a GARCH(1, 1) model, there are two main con-
sequences if @ + 8 = 1: persistence on the conditional
variance forecasting; and the variance of the uncondi-
tional distribution of the error term &; is infinite. In other
words, when o + B = 1 current shock persists indef-
initely by conditioning the future variance. Thus, and
according to [39], a significant impact of volatility on
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Table 8 ARCH-LM test: number of rejections

Indices/stocks # Rejections # Obs %
&P 500 3360 8797 38.19
DITA 3592 8797 40.83
NASDAQ 3864 8797 43.92
FACEBOOK 354 1911 18.52
AMAZON 982 5689 17.26
TESLA 303 2387 12.69
APPLE 1729 8797 19.65
NETFLIX 375 4427 8.47
GOOGLE 713 3863 18.46
Table 9 Structural breaks in the unconditional variance
Indices/stock Obs number Date Var Indices/stock Obs number Date Var
S&P 500 754 25/01/1988 14.17 DIIA 744 11/01/1988 17.66
3073 26/03/1997 0.58 3063 12/03/1997 0.42
4665 25/07/2003 1.81 4665 25/07/2003 1.70
5669 23/07/2007 0.46 5669 23/07/2007 0.43
6783 20/12/2011 3.12 6137 01/06/2009 4.32
8837 21/02/2020 0.65 8837 21/02/2020 0.79
5.64 6.42
NASDAQ 3409 27/07/1998 0.83
4586 02/04/2003 5.86
5958 12/09/2008 1.20
6109 21/04/2009 12.07
8836 20/02/2020 1.17
5.95
FACEBOOK 496 12/05/2014 10.63 AMAZON 1313 06/08/2002 38.82
991 28/04/2016 3.32 2499 24/04/2007 6.80
1421 11/01/2018 1.26 3132 26/10/2009 14.09
5.93 4777 10/05/2016 4.36
5147 26/10/2017 1.26
5.93
TESLA 970 08/05/2014 14.29 APPLE 3139 30/06/1997 12.46
1947 26/03/2018 5.71 3962 03/10/2000 997.48
2411 28/01/2020 12.21 6133 26/05/2009 8.75
34.21 8836 20/02/2020 2.63
9.78
NETFLIX 605 18/10/2004 31.27 GOOGLE 436 12/05/2006 6.37
2345 14/09/2011 10.71 811 07/11/2007 2.11
2747 23/04/2013 26.85 1115 23/01/2009 10.82
7.01 3902 20/02/2020 2.30
6.69
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Table 10 GARCH, GJR and EGARCH(1,1), persistence and Half-life—S&P 500

Full sample  25/01/1988  26/03/1997  25/07/2003  23/07/2007  20/12/2011  21/02/2020  18/12/2020
ARCH-LM 980.282* 15.224 51.079% 107.330* 35.930%* 335.662%* 250.550%* 56.268%*
o 0.093* —0.081 0.026%* 0.076* —0.031 0.104%* 0.191* 0.172*
B 0.902%* 1.080 0.969%* 0.888* 0.008 0.895%* 0.774% 0.819*
a+p 0.995 0.999 0.995 0.964 NA 0.999 0.965 0.991
Half-life 130.76 692.801 138.283 18.905 NA 692.801 19.654 76.704
t-df 5.508* 9.795* 5.227* 9.242% 8.530%* 6.601%* 5.067* 5.810%
y GIR 0.141%* 0.109%%#%* 0.018%%*%* 0.175* 0.159%* 0.172* 0.367* 0.024
y EGARCH —0.108* —0.142%%* —0.029* —0.141* —0.127* —0.149* —0.253* —0.048
BIC GARCH 2.606 5.079 2.159 3.352 2.098 3.526 2.168 3.839
BIC GJR 2.590 5.166 2.160 3.313 2.058 3.495 2.122 3.865
BIC EGARCH 2.585 5.165 2.159 3.308 2.056 3.496 2.110 3.875

ARCH-LM test. *, ** ***Denote statistically significant at the 1%, 5% and 10% significance levels, respectively. @ + B = 1 is the

measure of volatility persistence. Half-life gives the point estimate of the half-life in days given as HL =

log(0.5)
log(a+p)

t-df represents

the Student’s ¢ degrees of freedom. GARCH, GJR and EGARCH are conditional heteroskedastic models defined in (4), (6) and (5),

respectively

Table 11 GARCH, GJR and EGARCH(1,1), persistence and half-life—DJIA

Full sample 11/01/88  30/12/91 12/03/97  25/07/03 23/07/07  01/06/09 21/02/2020 18/12/2020
ARCH-LM 751.758%* 33.710% 6.607 28.331% 119.160* 27.039*% 149.504*  419.496*  66.738*
o 0.091* 0.035% —0.018 0.046* 0.070%* 0.043% 0.090%* 0.164* 0.213%*
B 0.900* 0.937* 1.017%* 0.914* 0.890%* 0.910* 0.898%* 0.819% 0.785%*
a+p 0.992 0.972 0.999 0.960 0.960 0.953 0.988 0.984 0.997
Half-life 85.630 24.407 692.801 16.98 16.98 14.398  57.415 42418 272.224
t-df 5.555% 3.919%* 6.622% 7.578%* 8.44% 9.908*  21.077* 5.056* 8.447*
y GJR 0.125%* 0.022 0.028 0.914* 0.134%* 0.168* 0.148%* 0.305%* 0.056
y EGARCH —0.097* —0.025 —0.056*%* —0.077* —0.113** —0.151* —0.124* —0.207* —0.055
BIC GARCH 2.589 2.731 2.789 1.968 3.269 2.029 3.987 2.309 3.969
BIC GIR 2.576 2.736 2.804 1.970 3.248 2.003 3.961 2.268 3.993
BIC EGARCH 2.571 2.735 2.803 1.969 3.236 1.997 3.960 2.266 4.000

ARCH-LM test. *, ** ***Denote statistically significant at the 1%, 5% and 10% significance levels, respectively. @ + f = 1 is the

measure of volatility persistence. Half-life gives the point estimate of the half-life in days given as HL =

log(0.5)
log(a+p) *

t-df represents

the Student’s ¢ degrees of freedom. GARCH, GJR and EGARCH are conditional heteroskedastic models defined in (4), (6) and (5),

respectively

stock prices can only take place if shocks to volatility
persist over a long time.

The parameter estimates resulting from the differ-
ent models reveal that the GARCH(1,1) processes are
highly persistent (almost-integrated) when the full sam-
ple is considered, with the o + B estimate ranging
from 0.989 to 1.000, in line with the extant literature.
However, persistence in the full-sample estimates, as

@ Springer

pointed out by Rapach and Strauss [40], sometimes
masks important differences in persistence across sub-
samples. If we consider all the sub-samples, the esti-
mates range between 0.207 (Facebook) and almost
1.000 (NASDAQ).

Table 19 shows the estimates for the two most recent
sub-samples. As can be seen, persistence is always
higher among the US stock indices, taking longer to
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Table 12 GARCH, GJR and EGARCH(1,1), persistence and half-life—NASDAQ

Full sample 27/07/1998 02/04/2003 12/09/2008 21/04/2009 20/02/2020 18/12/2020
ARCH-LM 2046.298* 1013.827* 116.000* 108.560* 33.232% 391.490* 40.722%*
o 0.111* 0.115% 0.096* 0.038* —0.090%%*%* 0.131%* 0.172%%*
B 0.889* 0.860* 0.866* 0.956* —0.605%* 0.846%* 0.828*
a+p 0.999 0.975 0.962 0.994 —0.695 0.977 1.000
Half-life 830.765 27.378 17.892 115.178 NA 29.802 1571.416
t-df 6.726* 5.588% 34.853* 18.935* 89.826* 5.247% 3.891%*
y GIR 0.120* 0.104* 0.178* 0.061* 0.229 0.303* 0.272*
y EGARCH —0.087* —0.079* —0.125* —0.050* —0.316%** —0.226* —0.122
BIC GARCH 2.909 2.234 4.527 2.975 5.508 2.763 4.157
BIC GJR 2.900 2.231 4.496 2.964 5.557 2.723 4.156
BIC EGARCH 2.897 2.227 4.502 2.965 5.539 2.715 4.175

ARCH-LM test. *, ** ***Denote statistically significant at the 1%, 5% and 10% significance levels, respectively. @ + B = 1 is the

measure of volatility persistence. Half-life gives the point estimate of the half-life in days given as HL

log(0.5)

= Tog@+p) *

t-df represents

the Student’s ¢ degrees of freedom. GARCH, GJR and EGARCH are conditional heteroskedastic models defined in (4), (6) and (5),

respectively

Table 13 GARCH, GJR and EGARCH(1,1), persistence and half-life—FACEBOOK

Full sample 12/05/2014 28/04/2016 11/01/2018 20/02/2020 18/12/2020
ARCH-LM 20.50%* 0.685 14.647 15.829 15.921 12.811
o 0.045%* 0.006 0.156%* 0.1517%%% 0.112%%% 0.185%
B 0.950* 0.979%* 0.051 0.386 0.624 0.681%*
a+p 0.996 0.985 0.207 0.537 0.736 0.867
Half-life 157.008 45.862 0.440 1.115 2.259 4.853
t-df 3.597* 4.338%* 4.938% 4.070* 3.945 3.494%
y GJR 0.054* 0.036 0.086 0.256%* 0.209* 0.285%
y EGARCH —0.043* —-0.017 —0.029 —0.134%* —0.121%* —0.088*
BIC GARCH 4.123 5.020 3.957 3.074 3.083 4.346
BIC GIR 4.118 5.023 3.969 3.078 3.085 4.340
BIC EGARCH 4.110 5.033 3.971 3.073 3.079 4.339

ARCH-LM test. *, ** ***Denote statistically significant at the 1%, 5% and 10% significance levels, respectively. @ + f = 1 is the

measure of volatility persistence. Half-life gives the point estimate of the half-life in days given as HL =

log(0.5)

log(a+p) *

t-df represents

the Student’s ¢ degrees of freedom. GARCH, GJR and EGARCH are conditional heteroskedastic models defined in (4), (6) and (5),

respectively

cancel the effects of shocks on volatility. Due to the
COVID-19 pandemic, persistence increased in 2020,
but the estimates remain far from 1 in the case of
FATANG stocks. If we go back to the period before
COVID-19, only Google behaved in a similar fashion
when compared to the US indices. Thus, we can con-
clude that bad news about FATANG stocks seems to
have a shorter impact on volatility.

Persistence for the whole the sample is also sub-
stantially higher when compared to the persistence for
each sub-sample; thus, splitting the sample according
to the structural breaks can reduce the overall persis-
tence. For example, in the case of Facebook, the esti-
mated half-life® of the volatility persistence decreases

9 Half-life gives the point estimate of the half-life in days given

_ log(0.5)
as HL = Tog(@4p) "
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Table 14 GARCH, GJR and EGARCH(1,1), persistence and half-life—AMAZON

Full sample 06/08/2002 24/04/2007  26/10/2009 10/05/2016  26/10/2017 18/12/2020
ARCH-LM 462.687* 21.554%% 0.427 20.070%** 9.216 38.621% 124.756*
o 0.038* 0.135% —0.001 0.116* 0.047%%* 0.098%** 0.264*
B 0.962* 0.732% 0.996 0.83% 0.801%* 0.811%* 0.709
a+p 1.000 0.867 0.995 0.946 0.848 0.909 0.973
Half-life 7219.937 4.857 138.283 12.486 4.204 7.236 25.102
t-df 3.840% 5.143% 3.872% 3.739% 3.991% 6.135% 5.061%*
y GJR 0.036* 0.111%%* 0.001 0.230* 0.119% 0.203%%* 0.150%%*
y EGARCH —0.029%* —0.046 —0.002 —10.151%* —0.107* —0.169* —0.067***
BIC GARCH 4.756 6.434 4.514 5.251 4.146 3.132 4.051
BIC GIR 4.754 6.436 4.527 5.233 4.135 3.132 4.059
BIC EGARCH 4.736 6.431 4.517 5.223 4.129 3.129 4.055

ARCH-LM test. *, ** ***Denote statistically significant at the 1%, 5% and 10% significance levels, respectively. @ + B = 1 is the

measure of volatility persistence. Half-life gives the point estimate of the half-life in days given as HL =

log(0.5)
log(a+p)

t-df represents

the Student’s ¢ degrees of freedom. GARCH, GJR and EGARCH are conditional heteroskedastic models defined in (4), (6) and (5),

respectively

Table 15 GARCH, GJR and EGARCH(1,1), persistence and half-life—TESLA

Full sample 08/05/2014 26/03/2018 28/01/2020 18/12/2020
ARCH-LM 165.073* 34.563% 16.895 12.521 23.59%%*
o 0.041%* 0.134%* 0.111 0.086 0.160%*
B 0.948%* 0.553* 0.662%** 0.694* 0.784*
a+p 0.989 0.688 0.673 0.780 0.945
Half-life 60.701 1.850 1.753 2.786 12.145
t-df 3.542% 3.802% 4.475% 3.367* 5.908%##%*
y GJR —0.004 —-10.010 0.127* 0.186 0.005
y EGARCH —0.008 0.008 —0.189* —10.088 —0.038
BIC GARCH 5.076 5.294 4.571 5.250 6.373
BIC GIR 5.080 5.300 4.563 5.259 6.3967
BIC EGARCH 5.077 5.297 4.571 5.257 6.393

ARCH-LM test. *, ** ***Denote statistically significant at the 1%, 5% and 10% significance levels, respectively. @ + f = 1 is the

measure of volatility persistence. Half-life gives the point estimate of the half-life in days given as HL =

log(0.5)
log(a+p) *

t-df represents

the Student’s ¢ degrees of freedom. GARCH, GJR and EGARCH are conditional heteroskedastic models defined in (4), (6) and (5),

respectively

from 157 days (when the whole sample is considered)
to approximately to 2 and 5 days in the most recent
sub-samples, which implies that a shock is expected to
lose half of its original impact in just two or five days
after the structural breaks are considered (see Table 13).
According to this stylized fact of the returns’ volatility,
FATANG stocks are also substantially different from
the US indices. After COVID-19 the estimated half-life

@ Springer

in days ranges between 4.853 (Facebook) and 25.652
(Apple), while the estimate for US indices ranges
between 76.704 (S&P 500) and 1571.224 (NASDAQ,
where the GARCH(1,1) process is highly persistent,
almost-integrated).

Finally, what conclusion can be drawn about the
asymmetric effect on volatility? Despite taking into
consideration the financial asset and the sub-sample,
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Table 16 GARCH, GJR and EGARCH(1,1), persistence and half-lifte—APPLE

Full sample 30/06/1997 03/10/2000 26/05/2009 20/02/2020 18/12/2020
ARCH-LM 42.814%* 158.408* 9.040 97.877* 60.108* 39.313*
o 0.061%* 0.036* 0.198* 0.029* 0.101* 0.139%*
B 0.938%* 0.893* 0.543* 0.961* 0.846%* 0.834*
a+p 0.999 0.929 0.741 0.990 0.947 0.973
Half-life 519.644 9.412 2.312 68.968 12.761 25.652
t-df 4.597* 4.041* 5.256 5.801%* 4.463* 4.525%
y GIR 0.039* 0.083* 0.015 0.040* 0.208* 0.162
y EGARCH —0.033* —0.061* 0.015 —0.045* —0.138* —0.115
BIC GARCH 4.533 4.809 5.620 4.867 3.656 4.947
BIC GJR 4.533 4.807 5.628 4.866 3.636 4.960
BIC EGARCH 4.521 4.805 5.634 4.864 3.628 4.962

ARCH-LM test. *, ** ***Denote statistically significant at the 1%, 5% and 10% significance levels, respectively. @ + B = 1 is the

_ log(0.5)
~ log(a+pB) "

the Student’s ¢ degrees of freedom. GARCH, GJR and EGARCH are conditional heteroskedastic models defined in (4), (6) and (5),
respectively

measure of volatility persistence. Half-life gives the point estimate of the half-life in days given as HL

t-df represents

Table 17 GARCH, GJR and EGARCH(1,1), persistence and half-life—NETFLIX

Full sample 18/10/2004 14/09/2011 23/04/2013 18/12/2020
ARCH-LM 32.096%* 11.149 8.961 1.430 9.864
o 0.031* 0.235%* 0.089%* 0.177 0.110%*
B 0.963* 0.377%%* 0.761%* 0.251 0.822%
a+p 0.994 0.612 0.850 0.428 0.931
Half-life 109.711 1.412 4.265 0.817 9.729
t-df 3.175% 3.217* 3.526%* 2.710% 3.357*
y GJR 0.018%%* 0.396%** 0.051 —0.131 0.153*
y EGARCH —0.029* —0.169%* —0.021 0.032 —0.072%
SIC GARCH 4.995 5.975 5.011 5.635 4.570
SIC GIR 4.996 5.979 5.014 5.643 4.564
SIC EGARCH 4.975 5.985 5.007 5.638 4.549

ARCH-LM test. *, ** ***Denote statistically significant at the 1%, 5% and 10% significance levels, respectively. @ + f = 1 is the

log(0.5)
log(a+p) *

the Student’s ¢ degrees of freedom. GARCH, GJR and EGARCH are conditional heteroskedastic models defined in (4), (6) and (5),

measure of volatility persistence. Half-life gives the point estimate of the half-life in days given as HL =

t-df represents

respectively

the asymmetric GJR and EGARCH models almost
completely dominate the symmetric GARCH model,
which means that negative shocks (when compared to
the positive ones) have a stronger impact on returns
volatility. The estimates for the asymmetric coefficient
y have the correct sign (positive in the case of GJR
and negative in the case of EGARCH), and they are
statistically significant for most of the sub-samples.

The Bayesian information criterion (BIC) also favors
the asymmetric conditional heteroskedasticity models.
There are just a few exceptions where positive and neg-
ative shocks have the same impact on volatility and the
symmetric GARCH beats the other two models. In the
most recent sub-sample, after COVID-19, the estimate
for the coefficient of asymmetry () is not statistically
significant in the cases of the three US indices: S&P
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Table 18 GARCH, GJR and EGARCH(1,1), persistence and half-lifte—GOOGLE

Full sample 12/05/2006 07/11/2007 23/01/2009 20/02/2020 18/12/2020
ARCH-LM 66.915% 27.295% 5.704 9.410 17.472 34.527*
o 0.063* 0.090%* 0.036 0.081 0.030* 0.161%*
B 0.927* 0.838%* 0.471 0.873% 0.954* 0.797*
a+p 0.990 0.928 0.507 0.954 0.984 0.959
Half-life 66.308 9.276 1.02 14.719 44.042 16.422
t-df 3.889% 4.469% 5.471% 4.149% 3.834% 4.872%%
y GJR 0.071%* 0.032 —0.046 0.156%%* 0.058%* 0.258%%*
y EGARCH —0.052% —0.019 —0.016 —0.254% —0.065%* —0.120%%*
BIC GARCH 3.756 4.593 3.667 5.183 3.459 4.571
BIC GIR 3.751 4.607 3.682 5.158 3.453 4.579
BIC EGARCH 3.742 4.611 3.685 5.204 3.444 4.585

ARCH-LM test. *, ** ***Denote statistically significant at the 1%, 5% and 10% significance levels, respectively. @ + B = 1 is the

measure of volatility persistence. Half-life gives the point estimate of the half-life in days given as HL =

log(0.5)
log(a+p)

t-df represents

the Student’s ¢ degrees of freedom. GARCH, GJR and EGARCH are conditional heteroskedastic models defined in (4), (6) and (5),

respectively

Table 19 Volatility persistence in the sub-samples before and after COVID-19

Before COVID-19

After COVID-19

Indices/Stocks o+ p Half-life oa+p Half-life
S&P 500 0.965 19.654 0.991 76.704
DJIA 0.984 42.418 0.997 272.224
NASDAQ 0.977 29.802 1.000 1571.416
FACEBOOK 0.736 2.259 0.867 4.853
AMAZON 0.909 7.236 0.973 25.102
TESLA 0.780 2.786 0.945 12.145
APPLE 0.947 12.761 0.973 25.652
NETFLIX 0.428 0.817 0.931 9.729
GOOGLE 0.984 44.042 0.959 16.422

500, NASDAQ (EGARCH estimate), DJIA plus Tesla
and Apple. Thus, it would appear that bad news still has
a higher (even shorter) impact on volatility in the case
of FATANG stocks; the difference between the impact
of positive and negative news on volatility seems lower
in the case of US indices.

6 Conclusions and future directions for research

Volatility of financial asset returns has been exten-
sively studied for the last thirty years, and it remains a
very important topic of investigation due to its impor-
tance for investors, financial analysts and academics. In
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this paper, we analyze how the volatility of returns of
three US stock indices: S&P500, DJIA and NASDAQ,
and six US stocks under the acronym FATANG: Face-
book, Amazon, Tesla, Apple, Netflix and Google, rep-
resenting the new economy, have evolved over recent
decades.

First we analyzed the dispersion, skewness and kur-
tosis of the empirical distributions of returns. To notice
the temporal changes, all the measures were computed
over a rolling window encompassing the previous year
of daily observations (T = 250). Then, based on the
unconditional standard deviation, we observed a sharp
decrease in volatility after the year 2012, regardless of
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the index or the stock being considered. For Amazon
and Apple, for example, the variance of returns before
2012 was almost 6 and 4 times higher than the variance
computed for the following six years. In terms of skew-
ness and kurtosis, when the stock indices were consid-
ered, most of the estimates of skewness were negative,
with just a few being statistically significant and posi-
tive. Furthermore, the peaks in the kurtosis were mostly
due to large negative returns, giving rise to the negative
spikes of the coefficient of skewness. The conclusions
are different when the individual FATANG stocks were
analyzed. The estimates of skewness could be either
positive or negative, and the peaks of kurtosis were also
explained by large positive returns leading to the pos-
itive spikes of the coefficient of skewness. Thus, large
positive returns also inflate the kurtosis. By separat-
ing the “bad” volatility and kurtosis from the “good”,
because the former represents risk while the latter only
represents uncertainty, and based on semi-variance and
semi-kurtosis measures, we concluded that while the
volatility and kurtosis of FATANG stocks returns rep-
resent more uncertainty than risk, they represent more
risk than uncertainty in the case of stock indices. Thus,
the indices would appear to be riskier than that partic-
ular class of tech stocks.

Second, we analyzed the autocorrelation of returns,
absolute returns and squared returns. According to
the Ljung-Box test for returns, the autocorrelation
seems not to be relevant (only in a small percentage
of windows is the “no autocorrelation” null hypothesis
rejected, with the exception being the NASDAQ com-
posite index with more than 20% of rejections). The
autocorrelation structure of returns still seems weaker
in the case of individual stocks. (In the case of Tesla,
for example, the number of rejections is almost zero.)
Even though the series of returns seemed to be weakly
correlated over time, the autocorrelation of absolute
and squared returns was stronger, pointing to a positive
autocorrelation over several days, which quantifies the
fact that high volatility events tend to cluster in time.
However, the volatility clustering stylized fact is not
so evident for individual stocks, especially in the cases
of Amazon, Tesla and Netflix. The empirical results
seem also to confirm that sample autocorrelations for
absolute returns are greater than the sample autocorre-
lations for squared returns. Since one possible expla-
nation for the large positive autocorrelation between
|r¢| and ”12 is the heteroskedasticity of returns, i.e., the
variance or conditional variance changes over time, we

also computed the ARCH-LM test. The results suggest
that all financial asset returns exhibit ARCH effects and
conditional heteroskedasticity. However, this empirical
result is not so evident in the case of FATANG stocks.

Finally, we modeled time-varying conditional
volatility. As several studies show that structural breaks
have potential implications regarding the estimation
results, we first tested for the existence of structural
breaks in volatility of the twelve returns series by apply-
ing a modified version of the iterated cumulative sum
of squares (ICSS) algorithm that allows for temporal
dependence. The results show strong evidence of struc-
tural breaks in the unconditional variance for all the
returns series, leading to distinct regimes in volatil-
ity. Next we estimated an ARMA(4,0) model for the
conditional mean in combination with GARCH(1,1),
GJR(1,1) and EGARCH(1,1) models for the condi-
tional variance across the sub-samples resulting from
the structural breaks identified by the modified ICSS
algorithm.

Three main conclusions can be drawn. First, the
ARCH-LM test points for the existence of conditional
heteroskedasticity in most of the series and for most of
the sub-samples resulting from the structural breaks.
However, in the most recent past there have been
four exceptions: Facebook, Tesla, Netflix and Google.
Thus, the suspicion of constant variance of returns
is more evident among the FATANG stocks. Second,
GARCH(1,1) processes are highly persistent (almost-
integrated) when estimated over the full sample, with
the estimate for o 4+ B ranging between 0.989 and 1.
If we focus mainly on the sub-sample resulting from
the last structural break, the estimates range between
0.867 (Facebook) and 1 (NASDAQ). The decrease in
volatility persistence is also a symptom of less volatility
in the stock markets. Finally, the asymmetric GJR and
EGARCH models almost completely dominate, despite
taking into consideration the financial asset and the
sub-sample being considered, the symmetric GARCH
model, which means that negative shocks (when com-
pared to positive ones) have a stronger impact on
returns volatility.

This paper opens up at least three new lines of
future investigation. Firstly, the newly proposed down-
side risk measure can be assessed (and compared to
traditional measures) in different classes of financial
assets, namely interest rates and exchange rates (includ-
ing crypto currencies). Secondly, due to the role of tech
stocks in the US capital markets, it is important to test
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whether there is a volatility spillover effect and whether
it runs one-way from FATANG stocks to US stock
indices, or whether there is a feedback effect. Finally,
major empirical findings point to volatility decreasing
in the most recent past, excluding March 2020. Thus,
should we keep faith with homoskedasticity or trust that
anew heteroskedasticity regime will come soon? Is the
2020 increase in volatility evidence of on-going struc-
tural change, or is it just a scare for investors? Further
empirical research is needed, therefore, to shed light on
volatility and to provide investors with guidance as to
risk in the capital markets in general, and in FATANG
stocks in particular.
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