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Confidence intervals for means and variances of nonnormal
distributions
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ABSTRACT
In this article, we propose new confidence intervals for the population
mean and variance, the ratio of two populations variance, and the differ-
ence in the arithmetic averages of two populations with nonnormal distri-
bution. Theoretical and practical aspects of the suggested techniques are
presented, as well as their comparison with existing methods based on the
estimated coverage probability. The suggested confidence intervals give
consistent and best coverage in comparison with other methods. In add-
ition, application of presented methods to a data set in domain of auditing
and accounting is described and analyzed. The empirical results confirm
the Monte Carlo simulation studies, highlighting the superiority of the now
proposed methods.
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1. Introduction

A confidence interval for population parameters gives the bounds where it is expected that parameters
lie with a certain confidence level. In this paper, following the works of Tan and Gleser (1993), Chen
(1995), Chen and Chen (1999), Cojbasic and Tomovic (2007) and Cahoy (2010), and based on the
results of Bonett (2006), Shoemaker (2003) and Feng et al. (2013), we derive new confidence intervals,
with coverage probability closer to the confidence level, for the population mean and variance, the
ratio of two population variances, and the difference in arithmetic averages of two populations with
nonnormal distribution, specially in the case of leptokurtic distributions.

First, we propose a new estimator for the fourth standardized moment about the population
central tendency by replacing the arithmetic mean and the trimmed mean proposed by Bonett
(2006) with the median and we compare the bias and the coverage probabilities of the three
resulting estimators. We show in Sec. 2 that all the three estimators have negative bias in lepto-
kurtic distributions underestimating the true value of kurtosis. The Pearson estimator, the one
based on arithmetic mean, has the largest negative bias. From the two estimators based on the
trimmed mean and median, the one based on median has the smallest negative bias. Estimated
coverage probability of the resulting confidence intervals also confirms its superiority. Thus, it
seems the most appropriate to estimate the level of kurtosis of leptokurtic distributions, and this
is the first contribution of the paper.

Second, still in Sec. 2, following the methodology of Bonett (2006) and considering the distri-
bution of the sample variance (Mood, Graybill, and Boes 2007) and its logarithm (Shoemaker
2003), we derive a confidence interval for the population variance using the median to estimate
the fourth central moment. From the Monte Carlo simulation study, and in case of leptokurtic
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distributions, the estimator based on the median results in confidence intervals for the population
variance with estimated coverage probability closer to the used confidence level. Thus, providing
a more accurate confidence interval for the population variance in case of leptokurtic distribu-
tions is the second contribution of the paper.

Third, we generalize in Sec. 3 the results of Bonett (2006) for one single population variance
to the ratio of two population variances and we compare the resulting confidence intervals with
the ones based on F� Snedecor distribution with the adjustment in degrees of freedom suggested
by Shoemaker (2003). The results show that all the confidence intervals are conservative in platy-
kurtic distributions. For moderate leptokurtic distributions the coverage probability of confidence
intervals resulting from the adjustment is closer to the confidence level. In the extreme lepto-
kurtic distribution ðv21Þ only the coverage probability of the confidence intervals resulting from
the new method (based on the median to estimate the fourth central moment) is close to the con-
fidence level. Thus, this more accurate method in case of extreme leptokurtic distributions is the
third contribution of the paper.

Many standard statistical and econometrical analyses, such as regression or the analysis of vari-
ance, have key assumptions implicit, namely that data is normally distributed (or at least symmet-
rically distributed), with constant variance. If the evidence indicates that the data assumptions
cannot be satisfied, using parametric statistical tests on such data may give a misleading result
and two courses of action are available. The first is to carry out a different statistical technique
which does not require the violated assumptions, such as non-parametric tests (in case of
ANOVA, for example). The second is to transform the data expecting that the “new” data meets
the assumptions of the analysis. Once this is accomplished, we can carry out the analysis on the
transformed variable. Where possible, data transformation is generally the easier of these two
ways (see Box and Cox (1964) and Atkinson (1986)). For right-skewed data, the log transform-
ation is, arguably, the most popular among the different types of transformations. However, sev-
eral authors including Feng et al. (2013), have found many misuses and misinterpretations of
analysis based on log-transformed data. For example, a common practice in statistics is to take
the log transformation and construct confidence intervals on the basis of the transformed data.
However, when computed based on log-transformed data, the confidence interval is for the geo-
metric mean and not for the arithmetic mean of the original data. Thus, the fourth contribution
of this paper is to propose a confidence interval for the population arithmetic mean based on the
confidence interval for the population geometric mean resulting from the log-transformed data.
The coverage probability of the new confidence interval is very close to the nominal confidence
level no matter the sample size (see Sec. 4 for details).

The confidence intervals for the difference of means of two populations appear in Sec. 5. We
extend the results of Bonett (2006) and Johnson (1978) and we derive a confidence interval for
the ratio of two populations arithmetic averages based on the confidence interval for the ratio of
two geometric averages. In terms of coverage probability the intervals give approximately the
same results but the lower length is achieved by the new proposed method, providing more effi-
cient estimates. This is the fifth contribution of the paper.

In Sec. 6 we analyze two populations of payables and receivables of a Portuguese company
for the year 2019. The empirical results confirm the Monte Carlo simulation studies, high-
lighting the superiority of the now proposed methods. Finally, in Sec. 7, we present our con-
cluding remarks.

2. Confidence interval for the variance

Let X1,X2, :::,Xn be a random sample. If Xi � Nðl,r2Þ, for all i, an exact 100ð1� aÞ% confi-
dence interval for r2 is:
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ðn� 1Þr̂2

q2
< r2 <

ðn� 1Þr̂2

q1
, (1)

where q1 ¼ v2a=2;n�1, q2 ¼ v21�a=2;n�1 and v2q;df represent the quantiles of the chi-squared distribu-
tion with df degrees of freedom. Taking the square root of the endpoints of (1) gives a confidence
interval for r.

As the confidence interval is very sensitive to minor violations of the normality assumption,
next we propose and discuss alternatives to the exact case. Let Xiði ¼ 1, 2, :::, nÞ be continuous,
independent and identically distributed random variables with finite mean, variance and fourth
moment. According to Mood, Graybill, and Boes (2007), Shoemaker (2003) and Bonett (2006),
the variance of ln ðr̂2Þ is given by (with a small-sample adjustment):

V ln r̂2ð Þ½ � ffi 1
n� 1

c4 �
ðn� 3Þ

n

� �
, (2)

where c4 ¼ l4
r4 , l4 is the fourth moment about the population mean and r is the standard devi-

ation. In practice, c4 and r are unknown, and their usual estimators are:

ĉ4ð1Þ ¼
n
Pn

i¼1 Xi � l̂ð Þ4Pn
i¼1 Xi � l̂ð Þ2

h i2 , r̂2 ¼
Pn

i¼1 Xi � l̂ð Þ2
n� 1

and l̂ ¼
Pn

i¼1Xi

n
: (3)

As ĉ4ð1Þ tends to have large negative bias in leptokurtic distributions, we also consider the
estimator ĉ4ð2Þ proposed by Bonett (2006), which is asymptotically equivalent to the Pearson’s
estimator:

ĉ4ð2Þ ¼
n
Pn

i¼1 Xi � l̂mð Þ4Pn
i¼1 Xi � l̂ð Þ2

h i2 , ĉ4ð3Þ ¼
n
Pn

i¼1 Xi � l̂medð Þ4Pn
i¼1 Xi � l̂ð Þ2

h i2 , (4)

where lm is the trimmed mean with trim-proportion equal to 1=½2ðn� 4Þ1=2�: We propose yet
another estimator ĉ4ð3Þ replacing the trimmed mean by the median: l̂med, the one with the
smallest negative bias as we show next.

A simulation study was conducted in order to compare the bias of Pearson estimator with the
one of the alternative estimators of kurtosis in Eq. (4). We simulate 100,000 Monte Carlo samples
of different sizes: 10, 20, 30, 40, 50 and 100 from various theoretical distributions: standard nor-
mal: N(0, 1), uniform: U(0, 1), beta: B(3, 3) and B(1, 10), logistic: Log, Laplace: Lap, Student’s t
with 5 degrees of freedom: t(5), gamma: G(1, 6), exponential: Exp, and chi-squared with 1 degree
of freedom: v21: The simulation routines have been programmed in R and they are available
if requested.

As one can see in Table 1, the bias of the three estimators is negative (with just a few excep-
tions) in leptokurtic distributions, confirming the results of Bonett (2006). Thus, on average, the
three estimators understate the true value of kurtosis. The Pearson estimator, the most popular,
has the largest negative bias. From the two estimators based on trimmed mean and median: ĉ4ð2Þ
and ĉ4ð3Þ, respectively, the one based on median has, on average, the smallest negative bias.
Thus, it seems the most appropriate to estimate the kurtosis of leptokurtic distributions.

To compare the three estimators1 for the coefficient of kurtosis: ĉ4ð1Þ, ĉ4ð2Þ and ĉ4ð3Þ, we
also carry out the following simulation by increasing the sample size to 200 and 500. First, we
generate 10,000 samples with different size (50, 100, 200 and 500) from the statistical distribu-
tions used before. Then we bootstrap, by re-sampling 1,000 times with replacement, each of the
10,000 samples generated before. See, for example, Gonz�alez-Manteiga, Cao, and Marron (1996),

1This research topic was suggested by one of the referees.
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for bootstrap details. The estimate for the coverage probability of the 95% confidence intervals,
resulting from percentiles 2.5 and 97.5, is computed based on the proportion of the 10,000 confi-
dence intervals including the true value of the coefficient of kurtosis. The results are shown in
Table 2.

If the estimators are consistent, we expect that the bootstrap distributions should collapse
around the true value of the kurtosis for the various distributions under analysis.

The performance of ĉ4ð1Þ is getting worse as the distribution moves from N(0, 1), U(0, 1) and
B(3, 3) to the leptokurtic distributions. This observation corroborates the results of Kim and
White (2004), where, in case of the student’s t with 5 degrees of freedom, the center of the box-
plot resulting from the Monte Carlo simulation study is still far away from the true value of kur-
tosis (6, for 5 degrees of freedom) even for n¼ 5000.

Confidence intervals resulting from ĉ4ð3Þ are still liberal in case of leptokurtic distributions,
but the difference of the estimated coverage probability to the nominal 95% confidence level is
substantially lower, for most of the leptokurtic distributions, when compared to the two other
estimators. Thus, the lack of consistency is more evident for ĉ4ð1Þ and ĉ4ð2Þ even when the sam-
ple size is n¼ 500, pointing to the best performance of the estimator based on the median: ĉ4ð3Þ,
in case of leptokurtic distributions.

As we referred before, the main purpose of this section is to propose a new confidence interval
for the population variance in case of nonnormal distributions. The exact distribution of the sam-
ple variance r̂2 is skewed to the right. Given the desirable properties of ln ðr̂2Þ, much of the

Table 1. Bias of ĉ4ð1Þ, ĉ4ð2Þ and ĉ4ð3Þ:
Dist. n ĉ4ð1Þ ĉ4ð2Þ ĉ4ð3Þ Dist. n ĉ4ð1Þ ĉ4ð2Þ ĉ4ð3Þ
N(0, 1) 10 �0.5414 �0.3323 0.0532 Lap 10 �2.9471 �2.5375 �2.1471

20 �0.2826 �0.2131 0.0537 20 �2.0704 �1.8691 �1.5654
30 �0.1946 �0.1593 0.0355 30 �1.6107 �1.4817 �1.2407
40 �0.1468 �0.1248 0.0295 40 �1.3478 �1.2571 �1.0575
50 �0.1170 �0.1017 0.0254 50 �1.1498 �1.0801 �0.9057
100 �0.0576 �0.0494 0.0152 100 �0.6690 �0.6250 �0.5349

U(0, 1) 10 0.1938 0.3356 0.8891 t(5) 10 �6.1727 �5.8250 �5.4489
20 0.1210 0.1511 0.5381 20 �5.4053 �5.2218 �4.9383
30 0.0830 0.0956 0.3797 30 �4.9348 �4.8048 �4.5821
40 0.0645 0.0713 0.2928 40 �4.6104 �4.5089 �4.3240
50 0.0518 0.0560 0.2404 50 �4.3788 �4.2959 �4.1349
100 0.0256 0.0277 0.1238 100 �3.5807 �3.5189 �3.4352

B(3, 3) 10 �0.0885 0.0671 0.4831 G(1, 6) 10 �1.4246 �1.1076 �0.6119
20 �0.0092 0.0292 0.3099 20 �0.9566 �0.7787 �0.2813
30 �0.0006 0.0157 0.2203 30 �0.7209 �0.5881 �0.0883
40 0.0047 0.0137 0.1738 40 �0.5936 �0.4867 0.0143
50 0.0051 0.0108 0.1416 50 �0.5070 �0.4171 0.0843
100 0.0036 0.0063 0.0729 100 �0.2738 �0.1804 0.2970

Log 10 �1.5197 �1.2355 �0.8567 Exp 10 �5.8271 �4.9979 �3.9308
20 �0.9984 �0.8761 �0.6058 20 �4.5549 �3.9186 �2.3262
30 �0.7529 �0.6788 �0.4720 30 �3.7884 �3.2620 �1.3966
40 �0.6036 �0.5520 �0.3850 40 �3.2471 �2.7927 �0.7405
50 �0.5083 �0.4699 �0.3286 50 �2.8617 �2.4615 �0.2823
100 �0.2899 �0.2672 �0.1965 100 �1.8276 �1.3803 0.9331

B(1, 10) 10 �4.4940 �3.8052 �2.8342 v21 10 �11.2528 �9.9512 �8.2984
20 �3.5958 �3.1075 �1.7294 20 �9.2556 �8.2219 �5.6224
30 �3.1297 �2.7432 �1.1649 30 �7.9967 �7.1329 �4.0416
40 �2.8403 �2.5179 �0.8180 40 �7.1007 �6.3526 �2.9455
50 �2.6508 �2.3732 �0.5845 50 �6.3828 �5.7162 �2.0835
100 �2.2092 �1.9086 �0.0531 100 �4.3967 �3.6377 0.2633

We simulate 100,000 Monte Carlo samples of different sizes: 10, 20, 30, 40, 50 and 100 from various theoretical distributions:
standard normal: N(0, 1), uniform: U(0, 1), beta: B(3, 3) and B(1, 10), logistic: Log, Laplace: Lap, Student’s t with 5 degrees of
freedom: t(5), gamma: G(1, 6), exponential: Exp, and chi-squared with 1 degree of freedom: v21: ĉ4ð1Þ, ĉ4ð2Þ and ĉ4ð3Þ are
the estimators for the standardized fourth central moment; see Eqs. (3) and (4). The bias is computed as ĉ4ðjÞ � c4ðjÞ,
where c4ðjÞ is the true value of kurtosis. For example, in case of the exponential distribution the kurtosis is 6. The average
value is computed based on the 100,000 Monte Carlo samples.
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asymmetry can be removed and hence the normal approximation improved. Thus, large-sample
confidence intervals for r2 may be obtained from a reverse-transformed confidence interval for
ln ðr2Þ :

exp ln r̂2ð Þ6z1�a=2seð1Þ
h i

and exp ln cr̂2ð Þ6z1�a=2seð2Þ
h i

, (5)

where z1�a=2 is the quantile of the standardized normal distribution, se is the standard error of
ln ðr̂2Þ :

seð1Þ ¼ 1
n� 1

ĉ4 �
ðn� 3Þ

n

� �� �1=2

and seð2Þ ¼ c
1

n� 1
ĉ4 �

ðn� 3Þ
n

� �� �1=2

, (6)

respectively, where c ¼ n=ðn� z1�a=2Þ is a small-sample adjustment that helps equalize the tails
probabilities (Bonett 2006). Taking the square root of the limits of the intervals in (5) gives a
confidence interval for r.

Next we compare the coverage probability of the confidence interval resulting from Eq. (1),
that we identify by “Normal” in the Tables 3 and 4, with the coverage probability of the three
confidence intervals obtained from Eq. (5), considering the alternative standard errors for ln ðr̂2Þ
in Eq. (6), and using the three different estimators for the standardized fourth central moment c4
in Eqs. (3) and (4), that we represent by ĉ4ð1Þ, ĉ4ð2Þ and ĉ4ð3Þ, respectively. Estimates of cover-
age probabilities of (1) and (5) were obtained using 100,000 Monte Carlo random samples of dif-
ferent sizes from the statistical distributions used in the simulation before. For the confidence
intervals in (5), the standard error of ln ðr̂2Þ is estimated according to the equations in (6) and
considering the three different estimators for c4. The simulation results are presented in Table 3
(using se(1)) and Table 4 (using se(2)). The results show, as it was expected, that (1) and (5) have
coverage probability close to k ¼ 1� a ¼ 95%, the confidence level, when sampling from a nor-
mal distribution.

Table 2. Estimated 95% probabilities of C. I. for the coefficient of kurtosis based on ĉ4ð1Þ, ĉ4ð2Þ and ĉ4ð3Þ:
Dist. n ĉ4ð1Þ ĉ4ð2Þ ĉ4ð3Þ Dist. n ĉ4ð1Þ ĉ4ð2Þ ĉ4ð3Þ
N(0, 1) 50 0.887 0.914 0.915 Lap 50 0.550 0.596 0.656

100 0.873 0.889 0.921 100 0.597 0.628 0.663
200 0.889 0.896 0.931 200 0.670 0.685 0.709
500 0.910 0.912 0.938 500 0.739 0.747 0.759

U(0, 1) 50 0.972 0.968 0.910 t(5) 50 0.326 0.369 0.443
100 0.964 0.962 0.915 100 0.361 0.387 0.424
200 0.953 0.954 0.920 200 0.415 0.429 0.452
500 0.949 0.950 0.931 500 0.502 0.511 0.520

B(3, 3) 50 0.978 0.985 0.979 G(1, 6) 50 0.652 0.732 0.893
100 0.959 0.963 0.970 100 0.690 0.756 0.894
200 0.956 0.959 0.969 200 0.740 0.797 0.916
500 0.956 0.956 0.960 500 0.791 0.836 0.928

Log 50 0.648 0.694 0.820 Exp 50 0.468 0.589 0.784
100 0.677 0.702 0.773 100 0.530 0.646 0.854
200 0.725 0.739 0.772 200 0.585 0.694 0.902
500 0.789 0.795 0.815 500 0.667 0.753 0.892

B(1, 10) 50 0.435 0.582 0.822 v21 50 0.400 0.518 0.686
100 0.432 0.574 0.849 100 0.469 0.579 0.774
200 0.428 0.557 0.884 200 0.517 0.610 0.850
500 0.437 0.612 0.922 500 0.614 0.690 0.905

We generate 10,000 samples of different sizes: 50, 100, 200 and 100 from various theoretical distributions: standard normal:
N(0, 1), uniform: U(0, 1), beta: B(3, 3) and B(1, 10), logistic: Log, Laplace: Lap, Student’s t with 5 degrees of freedom: t(5),
gamma: G(1, 6), exponential: Exp, and chi-squared with 1 degree of freedom: v21: Then we bootstrap, by re-sampling 1,000
times with replacement, each of the 10,000 samples generated before. ĉ4ð1Þ, ĉ4ð2Þ and ĉ4ð3Þ are the estimators for the
standardized fourth central moment; see Eqs. (3) and (4). The estimated coverage probability is computed based on the pro-
portion of the 10,000 confidence intervals including the true value of the kurtosis.
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With regard to nonnormal distributions, the results depend on its kurtosis level. The confi-
dence intervals resulting from Eq. (5) are slightly conservative in platykurtic distributions and
slightly liberal in moderately leptokurtic or skewed distributions. With highly nonnormal distri-
butions the coverage probability of (5) can be considerably less than 1� a unless n is large. In
contrast to (5), (1) is very conservative in platykurtic distributions, very liberal in leptokurtic dis-
tributions, and its coverage probability does not converge to 1� a as n increases. Clearly (5) is
superior to (1) for all distributions considered in Tables 3 and 4. When compared to the standard
error se(1) (Table 3), the estimated coverage probability improves when the alternative standard
error for the ln ðr̂2Þ : se(2), is used (Table 4). From the three estimators of c4, the one based on
median, ĉ4ð3Þ, results in confidence intervals for r2 with estimated coverage probability closer to
the true confidence level of 95%. Thus, confidence intervals for the population variance resulting
from (5) are superior to the ones resulting from (1) and the standard error of ln ðr̂2Þ improves
when the median is used to estimate c4.

3. Confidence interval for the ratio of variances

For two independent random variables with X1 � Nðl1,r21Þ and X2 � Nðl2, r22Þ, the confidence
interval for the ratio of population variances is:

Table 3. Estimated 95% probabilities of C. I. in (5) considering standard error se(1).

Dist. n Normal ĉ4ð1Þ ĉ4ð2Þ ĉ4ð3Þ Dist. n Exact ĉ4ð1Þ ĉ4ð2Þ ĉ4ð3Þ
N(0, 1) 10 0.950 0.898 0.908 0.928 Lap 10 0.837 0.809 0.828 0.853

20 0.951 0.919 0.922 0.936 20 0.817 0.855 0.861 0.877
30 0.951 0.929 0.930 0.942 30 0.808 0.876 0.879 0.890
40 0.949 0.933 0.934 0.943 40 0.807 0.891 0.893 0.901
50 0.950 0.936 0.937 0.944 50 0.799 0.898 0.899 0.906
100 0.950 0.945 0.945 0.948 100 0.794 0.920 0.921 0.923

U(0, 1) 10 0.992 0.949 0.954 0.970 t(5) 10 0.873 0.821 0.838 0.865
20 0.996 0.959 0.960 0.977 20 0.842 0.849 0.856 0.874
30 0.997 0.959 0.960 0.975 30 0.828 0.864 0.868 0.880
40 0.997 0.958 0.959 0.973 40 0.814 0.875 0.877 0.887
50 0.997 0.958 0.958 0.971 50 0.806 0.883 0.884 0.892
100 0.998 0.956 0.956 0.965 100 0.789 0.903 0.904 0.907

B(3, 3) 10 0.978 0.920 0.927 0.947 G(1, 6) 10 0.916 0.862 0.877 0.905
20 0.981 0.936 0.938 0.953 20 0.906 0.885 0.891 0.914
30 0.982 0.941 0.942 0.954 30 0.901 0.895 0.899 0.920
40 0.982 0.943 0.943 0.954 40 0.899 0.905 0.909 0.927
50 0.982 0.945 0.945 0.954 50 0.898 0.911 0.914 0.932
100 0.983 0.948 0.948 0.953 100 0.896 0.927 0.930 0.946

Log 10 0.908 0.861 0.874 0.897 Exp 10 0.765 0.719 0.760 0.812
20 0.896 0.889 0.893 0.909 20 0.731 0.780 0.804 0.862
30 0.892 0.902 0.905 0.917 30 0.717 0.815 0.831 0.889
40 0.890 0.911 0.912 0.921 40 0.709 0.835 0.848 0.904
50 0.888 0.916 0.917 0.924 50 0.703 0.849 0.860 0.914
100 0.884 0.932 0.933 0.936 100 0.691 0.885 0.895 0.938

B(1, 10) 10 0.829 0.778 0.807 0.854 v21 10 0.641 0.650 0.711 0.783
20 0.813 0.832 0.851 0.897 20 0.601 0.733 0.767 0.847
30 0.806 0.859 0.872 0.918 30 0.587 0.775 0.798 0.877
40 0.804 0.875 0.886 0.932 40 0.580 0.803 0.820 0.893
50 0.801 0.886 0.895 0.941 50 0.575 0.820 0.834 0.906
100 0.798 0.915 0.923 0.960 100 0.562 0.863 0.876 0.932

The coverage probability is computed based on 100,000 Monte Carlo samples of different sizes: 10, 20, 30, 40, 50 and 100
from various theoretical distributions: standard normal: N(0, 1), uniform: U(0, 1), beta: B(3, 3) and B(1, 10), logistic: Log,
Laplace: Lap, Student’s t with 5 degrees of freedom: t(5), gamma: G(1, 6), exponential: Exp, and chi-squared with 1 degree
of freedom: v21: ĉ4ð1Þ, ĉ4ð2Þ and ĉ4ð3Þ are the estimators for the standardized fourth central moment; see Eqs. (3) and (4).
The confidence intervals, except “Normal”, are computed based on se(1), the standard error of ln ðr̂2Þ proposed in Eq. (6).

6 J. D. CURTO



ICr2
2

r2
1

" #
k

¼
#
S22
S21

� f1; S
2
2

S21
� f2
"
, (7)

where f1 and f2 are the quantiles of the F distribution with n1 � 1 and n2 � 1 degrees of freedom.
As ln r22

r21

� �
¼ ln ðr22Þ � ln ðr21Þ, a confidence interval for r22

r21
can also be deduced from a

reverse-transformed confidence interval of ln ðr22Þ � ln ðr21Þ
� 	

:

exp ln c2r̂
2
2


 �� ln c1r̂
2
1


 �� 	
6z1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
seð2Þ21 þ seð2Þ22

q� �
: (8)

We do not consider se(1) due to the best performance of se(2) in case of a single variance. To
compare the coverage probability of the new confidence interval for the ratio of two populations
variance resulting from Eq. (8), we consider also the confidence interval resulting from Eq. (7) –
identified by “Normal” in the next table – and the confidence interval resulting from Eq. (7) but
with the adjustment in degrees of freedom (r1 and r2) suggested by Shoemaker (2003):

ri ¼ 2ni
l4
r4 � ni�3

ni�1

, i ¼ 1, 2, (9)

where l4 is the fourth moment about the population mean, r is the standard deviation and ni is
the size of sample i. Thus, we assume that r22S

2
1=r

2
1S

2
2 has an F� Snedecor distribution with r1

Table 4. Estimated 95% probabilities of C. I. in (5) considering standard error se(2).

Dist. n ĉ4ð1Þ ĉ4ð2Þ ĉ4ð3Þ Dist. n ĉ4ð1Þ ĉ4ð2Þ ĉ4ð3Þ
N(0, 1) 10 0.950 0.956 0.969 Lap 10 0.934 0.943 0.957

20 0.941 0.943 0.956 20 0.924 0.927 0.940
30 0.942 0.944 0.954 30 0.927 0.930 0.938
40 0.943 0.944 0.952 40 0.927 0.928 0.936
50 0.942 0.943 0.950 50 0.929 0.930 0.936
100 0.944 0.944 0.947 100 0.936 0.936 0.940

U(0, 1) 10 0.962 0.966 0.984 t(5) 10 0.918 0.930 0.946
20 0.947 0.949 0.974 20 0.902 0.908 0.922
30 0.947 0.949 0.970 30 0.902 0.905 0.915
40 0.947 0.948 0.967 40 0.901 0.904 0.912
50 0.948 0.949 0.964 50 0.905 0.907 0.914
100 0.948 0.948 0.958 100 0.912 0.913 0.917

B(3, 3) 10 0.957 0.961 0.977 G(1, 6) 10 0.875 0.898 0.932
20 0.947 0.949 0.965 20 0.874 0.890 0.931
30 0.946 0.947 0.960 30 0.884 0.897 0.940
40 0.948 0.948 0.959 40 0.892 0.902 0.946
50 0.948 0.948 0.957 50 0.900 0.909 0.952
100 0.948 0.948 0.953 100 0.918 0.926 0.963

Log 10 0.934 0.943 0.957 Exp 10 0.839 0.870 0.906
20 0.924 0.927 0.940 20 0.840 0.861 0.909
30 0.927 0.930 0.938 30 0.853 0.869 0.919
40 0.927 0.928 0.936 40 0.865 0.876 0.926
50 0.929 0.930 0.936 50 0.874 0.884 0.933
100 0.936 0.936 0.940 100 0.895 0.905 0.946

B(1, 10) 10 0.876 0.898 0.931 v21 10 0.765 0.816 0.874
20 0.874 0.891 0.932 20 0.794 0.825 0.895
30 0.885 0.898 0.941 30 0.815 0.837 0.907
40 0.893 0.904 0.947 40 0.832 0.848 0.917
50 0.902 0.910 0.953 50 0.844 0.857 0.923
100 0.920 0.928 0.965 100 0.876 0.888 0.941

The coverage probability is computed based on 100,000 Monte Carlo samples of different sizes: 10, 20, 30, 40, 50 and 100
from various theoretical distributions: standard normal: N(0, 1), uniform: U(0, 1), beta: B(3, 3) and B(1, 10), logistic: Log,
Laplace: Lap, Student’s t with 5 degrees of freedom: t(5), gamma: G(1, 6), exponential: Exp, and chi-squared with 1 degree
of freedom: v21: ĉ4ð1Þ, ĉ4ð2Þ and ĉ4ð3Þ are the estimators for the standardized fourth central moment; see Eqs. (3) and (4).
The confidence intervals are computed based on se(2), the standard error of ln ðr̂2Þ proposed in Eq. (6).
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and r2 degrees of freedom. The confidence interval resulting from Eq. (9) is named by F1 in
Table 5.

Estimates of coverage probabilities of confidence intervals resulting from Eqs. (7) (8), and (7)
with degrees of freedom adjustment (9), were obtained using 100,000 Monte Carlo random sam-
ples of different sizes from the statistical distributions used in the section before. For the confi-
dence intervals resulting from (8), the standard error of ln ðr̂2Þ is estimated considering the three
different estimators for c4. The simulation results are presented in Table 5. The results show that
all the confidence intervals are conservative in platykurtic distributions. For moderate leptokurtic
distributions the coverage probability of confidence intervals resulting from F1, an F distribution
with Shoemaker (2003) degrees of freedom adjustment, is close to k ¼ 1� a: In the extreme lep-
tokurtic distribution ðv21Þ only the coverage probability of the confidence intervals resulting from
(8), with ĉ4ð3Þ estimator, is close to 1� a: All the other distributions result in very liberal confi-
dence intervals and its coverage probability does not converge to 1� a: Thus, for moderate lepto-
kurtic distributions, we recommend a confidence interval for the ratio of populations variance
based on F� Snedecor distribution with degrees of freedom adjustment proposed by Shoemaker
(2003). In case of extreme leptokurtic distributions, we recommend (8) with ĉ4ð3Þ : the estimation
of the fourth central moment l4 is based on the median.

Table 5. Estimated 95% probabilities of C. I. for the ratio of populations variance.

Dist. n Normal F1 ĉ4ð1Þ ĉ4ð2Þ ĉ4ð3Þ Dist. n Normal F1 ĉ4ð1Þ ĉ4ð2Þ ĉ4ð3Þ
N(0, 1) 10 0.9496 0.9931 0.9931 0.9974 0.9972 Lap 10 0.8427 0.9793 0.9793 0.9917 0.9899

20 0.9493 0.9914 0.9914 0.9948 0.9949 20 0.8175 0.9791 0.9791 0.9868 0.9857
30 0.9503 0.9923 0.9923 0.9944 0.9947 30 0.8093 0.9820 0.9820 0.9869 0.9863
40 0.9499 0.9920 0.9920 0.9939 0.9943 40 0.8047 0.9835 0.9835 0.9869 0.9867
50 0.9494 0.9928 0.9928 0.9942 0.9942 50 0.8011 0.9859 0.9859 0.9884 0.9881
100 0.9503 0.9933 0.9933 0.9941 0.9942 100 0.7915 0.9886 0.9886 0.9896 0.9895

U(0, 1) 10 0.9886 0.9972 0.9972 0.9995 0.9991 t(5) 10 0.8740 0.9444 0.9858 0.9944 0.9938
20 0.9946 0.9976 0.9976 0.9991 0.9991 20 0.8398 0.9498 0.9820 0.9893 0.9887
30 0.9962 0.9975 0.9975 0.9984 0.9988 30 0.8215 0.9510 0.9829 0.9879 0.9879
40 0.9968 0.9971 0.9971 0.9979 0.9985 40 0.8111 0.9528 0.9837 0.9875 0.9873
50 0.9970 0.9967 0.9967 0.9978 0.9983 50 0.8050 0.9546 0.9848 0.9877 0.9877
100 0.9977 0.9960 0.9960 0.9967 0.9973 100 0.7810 0.9546 0.9877 0.9892 0.9889

B(3, 3) 10 0.9728 0.9953 0.9953 0.9982 0.9981 G(1, 6) 10 0.8019 0.9052 0.9626 0.9976 0.9908
20 0.9791 0.9949 0.9949 0.9971 0.9972 20 0.7479 0.9224 0.9590 0.9902 0.9888
30 0.9819 0.9948 0.9948 0.9965 0.9969 30 0.7271 0.9314 0.9639 0.9814 0.9901
40 0.9812 0.9945 0.9945 0.9962 0.9965 40 0.7187 0.9369 0.9698 0.9793 0.9922
50 0.9819 0.9945 0.9945 0.9958 0.9960 50 0.7097 0.9395 0.9728 0.9781 0.9935
100 0.9822 0.9946 0.9946 0.9955 0.9956 100 0.6935 0.9474 0.9821 0.9848 0.9959

Log 10 0.9103 0.9430 0.9890 0.9955 0.9948 Exp 10 0.7684 0.8957 0.9537 0.9969 0.9880
20 0.8982 0.9471 0.9868 0.9920 0.9916 20 0.7317 0.9211 0.9560 0.9885 0.9879
30 0.8939 0.9491 0.9878 0.9911 0.9907 30 0.7215 0.9310 0.9633 0.9804 0.9905
40 0.8895 0.9500 0.9880 0.9907 0.9906 40 0.7076 0.9381 0.9695 0.9784 0.9925
50 0.8866 0.9482 0.9886 0.9909 0.9909 50 0.7042 0.9406 0.9736 0.9790 0.9936
100 0.8847 0.9502 0.9909 0.9920 0.9919 100 0.6902 0.9459 0.9819 0.9847 0.9959

B(1, 10) 10 0.8313 0.9038 0.9667 0.9982 0.9911 v21 10 0.595 0.8003 0.8814 0.9766 0.9652
20 0.8102 0.9217 0.9677 0.9930 0.9915 20 0.5175 0.8074 0.8784 0.8866 0.9634
30 0.8075 0.9311 0.9731 0.9881 0.9930 30 0.4674 0.7926 0.8781 0.8744 0.9617
40 0.8027 0.9367 0.9775 0.9858 0.9944 40 0.4284 0.7735 0.8734 0.8682 0.9592
50 0.8035 0.9388 0.9790 0.9849 0.9954 50 0.3913 0.747 0.8657 0.8611 0.9544
100 0.7985 0.9451 0.9862 0.9882 0.9974 100 0.2621 0.6375 0.8190 0.8272 0.9488

The coverage probability is computed based on 100,000 Monte Carlo samples of different sizes: 10, 20, 30, 40, 50 and 100
from various theoretical distributions: standard normal: N(0, 1), uniform: U(0, 1), beta: B(3, 3) and B(1, 10), logistic: Log,
Laplace: Lap, Student’s t with 5 degrees of freedom: t(5), gamma: G(1, 6), exponential: Exp, and chi-squared with 1 degree
of freedom: v21: ĉ4ð1Þ, ĉ4ð2Þ and ĉ4ð3Þ are the estimators for the standardized fourth central moment; see Eqs. (3) and (4).
The confidence intervals are computed based on Eqs. (7) (8) and (9). Column “Normal” refers to the confidence interval
assuming normality; see Eq. (7). F1 refers to the confidence interval resulting from Eq. (7) but with the adjustment in
degrees of freedom (r1 and r2) suggested by Shoemaker (2003).
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4. Confidence interval for the average

As we referred before, the log is the most popular transformation for right-skewed data. The pur-
pose of this section is to provide a confidence interval for the arithmetic average of the original
data X from a reverse-transformed confidence interval for the arithmetic average of the log trans-
formation data Y ¼ ln ðXÞ: So, we transform the original data to achieve normality (at least as
approximation) but the purpose remains the statistical inference about the arithmetic average of
the original data (see Feng et al. (2013) to better understand the problem). Thus, we have to
reverse the confidence interval on logs to a confidence interval in the original scale.

Let X be a random variable with arithmetic mean laX and variance r2X and let Y be the log-
transformed outcome: Y ¼ log ðXÞ: The exponentiation of the arithmetic mean of Y:

laY ¼ n�1
Xn
i¼1

Yi ¼ n�1
Xn
i¼1

log Xið Þ ¼ n�1 log
Yn
i¼1

Xi

 !
¼ log

Yn
i¼1

Xi

 !n�1

(10)

is the geometric mean of X:

exp laYð Þ ¼ exp log
Yn
i¼1

Xi

 !n�1
24 35 ¼

Yn
i¼1

Xi

 !n�1

¼ lgX: (11)

Thus, the geometric mean ðlgXÞ of the distribution of a random variable X is the exponenti-
ation of the arithmetic mean of the natural logarithm of X.

If X � log-normalðl, r2Þ, then the log-transformed outcome Y ¼ log ðXÞ has a normal distri-
bution with mean l and variance r2 : Y � Nðl,r2Þ, and the expected value of exp ðYÞ is:

E exp ðYÞ½ � ¼ EðXÞ|ffl{zffl}
laX

¼ exp lþ r2

2

� �
¼ exp

r2

2

� �
exp laYð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

lgX

, (12)

where exp ðlaYÞ is the geometric mean of X (see Eq. (11)). This equation shows that a simple
adjustment to the geometric mean is needed to obtain the arithmetic mean of X. Because r2 >
0, exp r2

2

� �
> 1, and for large r2 this adjustment factor can be substantially larger than unity.

The lgX plays an important role in a log-normal distribution because the distribution of a ratio
of log-normal random variables has a known log-normal distribution, and the geometric mean of
a log-normal ratio is equal to the ratio of the individual geometric means (no such convenient
property holds for arithmetic means with log-normal data, with either differences or ratios).

Equation (12) relies on the normality of Y, assuming that the distribution of X is log-normal.
However, right-skewed data does not imply that the data generating process is log-normal and it
is useful to have an adjustment factor that does not rely on normality (Wooldridge 2020):

EðXÞ ¼ laX ¼ c exp laYð Þ ¼ clgX: (13)

The ð1� aÞ � 100% confidence interval for the exponential of the arithmetic average of Y and
the geometric average of X is:#

exp l̂aY � tn�1, a=2 � r̂Y=
ffiffiffi
n

p� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LL

; exp l̂aY þ tn�1, a=2 � r̂Y=
ffiffiffi
n

p� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

UL

"
(14)

where tn�1, a=2 is the ð1� a=2Þ quantile of Student’s t distribution with n� 1 degrees of freedom.
l̂aY and r̂2

Y are the sample arithmetic mean and variance of Y. Since the geometric mean is a
monotonic function of the mean of the logarithms, the upper and lower confidence limits for the
geometric mean of X are the exponential of the confidence limits for laY. Eq. (14) relies on the
normality of Y, assuming that the distribution of X is log-normal. If only the approximation to
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normality is feasible, we replace tn1þn2�2, a=2 by z1�a=2, the quantile of the standardized normal
distribution. As Galton (1897) suggested in one of the earliest papers on geometric average, the
distribution of l̂aY will approach normality as n increases, for all parent distributions to which
the central limit theorem applies. Thus, the distribution of l̂gX will approach the log-normal
form, even though the parent distribution of X may not be log-normal (Alf and Grossberg 1979).

The confidence interval for the arithmetic mean of X results from the product of the limits in
(14) by the estimate of c (see Eq. (13)):

ĉLL; ĉULð Þ: (15)

To estimate c we follow the procedure used by Wooldridge (2020) through the regression of
the arithmetic average of X: EðXÞ ¼ laX , on the single variable (the geometric average of
X : lgX), without an intercept; that is, we perform a simple regression through the origin. The
coefficient on lgX is the estimate of c. If only a sample is available, we can bootstrap the sample
to get different estimates for laX and lgX and proceed with the estimation.

To assess the coverage probability of the confidence interval in (15), identified by ĉl̂gX , we
compare it (see Table 6) with confidence intervals computed in three different ways: assuming
the normality of X (Normal), considering the estimate of variance proposed by Bonett (2006):
exp ln ðcr̂2Þ

� 	
, and the one resulting from the corrected t variable which is derived by using a

Cornish and Fisher (1938) expansion procedure. This form for t differs from the usual variable in
that the numerator is adjusted by a term involving ðl̂a � laÞ2 and a constant. These adjustments
correct bias and skewness effects due to the skewness of the nonnormal distributions (see
Johnson (1978) for details):

t0 ¼ l̂a � lað Þ þ l3
6r2n

� �
r2

n

� ��1
2

(16)

and the endpoints of the resulting ð1� aÞ percent confidence interval for the population arith-
metic average would be:

l̂a þ
l̂3

6r̂2n

� �
6tn�1, a=2

r̂ffiffiffi
n

p : (17)

Estimates of the coverage probability of the four confidence intervals were obtained using
100,000 Monte Carlo random samples of different sizes: 10, 20, 30, 40, 50 and 100, from different
distributions for which the logarithm of the random variable X is defined (X> 0). The simulation
results are shown in Table 6. In case of symmetric distributions, the coverage probability of the
Normal, Bonett and Johnson confidence intervals is very similar and closer to the nominal confi-
dence level, when compared to the one resulting from ĉdGMX: The conclusion is different when
right-skewed distributions are considered. Thus, by log-transforming the original data, computing
a confidence interval for the geometric average and then computing a confidence interval for the
arithmetic average based on Eqs. (13) (14) and (15) results in a coverage probability that is very
close to the nominal confidence level, no matter the sample size. Thus, our recommendation is to
use this procedure to obtain confidence intervals for the arithmetic average in case of right-
skewed distributions.

5. Confidence interval for the difference of averages

In this section we compare the coverage probability of four confidence intervals for the difference
of the arithmetic averages of two populations. All the confidence intervals are derived from the
results of Sec. 4 for the univariate case. The first one, that we identify by “Normal”, is given by:
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l̂1 � l̂2ð Þ6z1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2
1

n1
þ r̂2

2

n2

s
, (18)

where z1�a=2 is the quantile of the standardized normal distribution, ni, l̂i and r̂2
i are the size,

the average and the variance of sample i (i¼ 1, 2), respectively.
The second one is based on the variance adjustment proposed by Bonett (2006):

l̂1 � l̂2ð Þ6z1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2
B1

n1
þ r̂2

B2

n2

s
, (19)

where r̂2
Bi ¼ exp ln ðcir̂2

i Þ
� 	

, see Eq. (5), and ci ¼ ni=ðni � z1�a=2Þ:
The third confidence interval is based on the result of Johnson (1978):

�l1 þ
l̂1, 3

6r̂2
1n1

 !
� �X2 þ l̂2, 3

6r̂2
1n2

 !
6tn1þn2�2, a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2
1

n1
þ r̂2

2

n2

s
: (20)

As the geometric averages of the original data Xi are given by: exp ðlY1
Þ and exp ðlY2

Þ, and
lX1

lX2

¼ c1 exp lY1ð Þ
c2 exp lY2ð Þ

¼ c1
c2
exp lY1

� lY2ð Þ,

the fourth confidence interval for the ratio of two arithmetic averages is derived from the confi-
dence interval for the ratio of two geometric averages:

Table 6. Estimated 95% probabilities of C. I. for arithmetic average.

Dist. n Normal Bonett Johnson ĉcGMX Dist. n Normal Bonett Johnson ĉcGMX

U(0,1) 10 0.9460 0.9626 0.9475 0.9295 W(1,1) 10 0.8998 0.9195 0.9045 0.9499
20 0.9473 0.9578 0.9486 0.9369 20 0.9185 0.9288 0.9201 0.9486
30 0.9509 0.9577 0.9491 0.9410 30 0.9266 0.9333 0.9293 0.9491
40 0.9495 0.9548 0.9505 0.9420 40 0.9312 0.9366 0.9333 0.9488
50 0.9496 0.9537 0.9499 0.9427 50 0.9354 0.9398 0.9367 0.9502
100 0.9505 0.9527 0.9498 0.9471 100 0.9416 0.9440 0.9430 0.9498

B(3,3) 10 0.9482 0.9649 0.9487 0.9379 G(1,6) 10 0.8379 0.8608 0.9120 0.9481
20 0.9489 0.9593 0.9496 0.9423 20 0.8680 0.8794 0.9237 0.9479
30 0.9484 0.9558 0.9505 0.9433 30 0.8813 0.8882 0.9290 0.9491
40 0.9501 0.9553 0.9511 0.9457 40 0.8914 0.8969 0.9344 0.9494
50 0.9495 0.9542 0.9496 0.9463 50 0.8983 0.9027 0.9362 0.9491
100 0.9504 0.9528 0.9515 0.9490 100 0.9169 0.9192 0.9441 0.9492

LN(0,1) 10 0.8379 0.8608 0.8431 0.9481 Exp 10 0.8993 0.9183 0.9036 0.9501
20 0.8680 0.8794 0.8718 0.9479 20 0.9191 0.9291 0.9217 0.9495
30 0.8813 0.8882 0.8861 0.9491 30 0.9277 0.9345 0.9304 0.9483
40 0.8914 0.8969 0.8971 0.9494 40 0.9323 0.9378 0.9335 0.9501
50 0.8983 0.9027 0.9029 0.9491 50 0.9343 0.9384 0.9361 0.9490
100 0.9169 0.9192 0.9194 0.9492 100 0.9424 0.9444 0.9421 0.9486

B(1,10) 10 0.9134 0.9317 0.9155 0.9489 v21 10 0.8612 0.8807 0.8631 0.9487
20 0.9277 0.9374 0.9311 0.9488 20 0.8908 0.9006 0.8983 0.9486
30 0.9342 0.9415 0.9361 0.9486 30 0.9078 0.9150 0.9104 0.9475
40 0.9382 0.9436 0.9393 0.9484 40 0.9176 0.9230 0.9198 0.9488
50 0.9411 0.9453 0.9431 0.9482 50 0.9231 0.9273 0.9250 0.9493
100 0.9437 0.9457 0.9459 0.9480 100 0.9340 0.9363 0.9366 0.9489

We simulate 100,000 Monte Carlo samples of different sizes: 10, 20, 30, 40, 50 and 100 from distributions: uniform: U(0,1),
beta: B(3,3) and B(1,10), log-normal: LN(0,1), Weibull: W(1,1), Gamma: G(1,6), exponential: Exp, and chi-squared with 1 degree
of freedom: v21: Normal: l̂6tn�1, 1�a=2

r̂ffiffi
n

p : Bonett: l̂6z1�a=2
r̂Bffiffi
n

p , where r̂2
B ¼ exp ½ln ðcr̂2Þ�, see Eq. (5). Johnson:

l̂ þ l̂3

6r̂2n

� �
6tn�1, 1�a=2

r̂ffiffi
n

p , see Eqs. (16) and (17). ĉcGMX : ðĉLL; ĉULÞ, see Eqs. (14) and (15).
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#
exp l̂Y1

� l̂Y2
� tn1þn2�2, a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2
Y1

n1
þ r̂2

Y2

n2

s0@ 1A
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"

(21)

where n1 þ n2 � 2 is the ð1� a=2Þ quantile of Student’s t distribution with n1 þ n2 � 2 degrees
of freedom. l̂Yi

and r̂2
Yi

are the sample mean and variance of Yi. Eq. (21) relies on the normality
of Yi, assuming that the distribution of Xi is log-normal. If only the approximation to normality
is feasible, we replace tn1þn2�2, a=2 by z1�a=2, the quantile of the standardized normal distribution.

After computing the confidence limits in ð21Þ it is possible to obtain a confidence interval for
the ratio of two arithmetic averages, which results from the product of the limits by the ratio of
the estimates for c (see Eq. (13)):

ĉ1
ĉ2

� LL; ĉ1
ĉ2

� UL
� �

: (22)

Estimates of the coverage probability of the four confidence intervals were obtained using
100,000 Monte Carlo random samples of different sizes: 10, 20, 30, 40, 50 and 100 (population 1)
and 15, 25, 35, 45, 55, 110 (population 2), from different distributions (see Table 7). As one can
see, the confidence intervals give approximately the same coverage and they are very close to the
nominal confidence level of 95%. However, ĉdGMX , the confidence interval resulting from Eqs.
(21) and (22) is the one with the smallest length (see Table 8), providing more efficient estimates.

Table 7. Estimated 95% probabilities of C. I. for the difference of arithmetic averages.

Dist. n Normal Bonett Johnson ĉcGMX Dist. n Normal Bonett Johnson ĉcGMX

U(0,1) 10 0.9477 0.9626 0.9395 0.9360 W(1,1) 10 0.9476 0.9647 0.9496 0.9372
20 0.9488 0.9593 0.9459 0.9455 20 0.9498 0.9595 0.9512 0.9441
30 0.9495 0.9557 0.9455 0.9452 30 0.9496 0.9561 0.9503 0.9461
40 0.9507 0.9546 0.9473 0.9471 40 0.9491 0.9547 0.9498 0.9460
50 0.9505 0.9523 0.9482 0.9462 50 0.9491 0.9533 0.9495 0.9470
100 0.9506 0.9521 0.9494 0.9478 100 0.9499 0.9518 0.9500 0.9474

B(3,3) 10 0.9238 0.9459 0.9257 0.9089 G(1,6) 10 0.9488 0.9655 0.9487 0.9378
20 0.9368 0.9481 0.9378 0.9303 20 0.9495 0.9587 0.9490 0.9437
30 0.9407 0.9476 0.9413 0.9353 30 0.9503 0.9569 0.9503 0.9459
40 0.9443 0.9484 0.9441 0.9391 40 0.9502 0.9551 0.9499 0.9473
50 0.9440 0.9480 0.9443 0.9411 50 0.9500 0.9543 0.9505 0.9474
100 0.9443 0.9472 0.9452 0.9421 100 0.9511 0.9532 0.9504 0.9483

LN(0,1) 10 0.9604 0.9746 0.9479 0.9518 Exp 10 0.9517 0.9681 0.9506 0.9436
20 0.9601 0.9676 0.9489 0.9513 20 0.9518 0.9616 0.9509 0.9465
30 0.9573 0.9649 0.9496 0.9529 30 0.9514 0.9584 0.9511 0.9477
40 0.9571 0.9629 0.9503 0.9522 40 0.9509 0.9560 0.9508 0.9475
50 0.9565 0.9606 0.9501 0.9514 50 0.9515 0.9556 0.9513 0.9487
100 0.9538 0.9553 0.9500 0.9480 100 0.9507 0.9529 0.9502 0.9481

B(1,10) 10 0.9258 0.9488 0.9273 0.9160 v21 10 0.9546 0.9711 0.9511 0.9479
20 0.9386 0.9499 0.9396 0.9325 20 0.9538 0.9637 0.9514 0.9481
30 0.9412 0.9487 0.9425 0.9370 30 0.9534 0.9601 0.9505 0.9488
40 0.9424 0.9481 0.9424 0.9393 40 0.9529 0.9581 0.9507 0.9492
50 0.9450 0.9497 0.9453 0.9422 50 0.9533 0.9576 0.9506 0.9500
100 0.9445 0.9468 0.9457 0.9417 100 0.9496 0.9520 0.9494 0.9465

We simulate 100,000 Monte Carlo samples of different sizes: 10, 20, 30, 40, 50 and 100 (population 1) and 15, 25, 35, 45, 55,
110 (population 2) from distributions: uniform: U(0,1), beta: B(3,3) and B(1,10), log-normal: LN(0,1), Weibull: W(1,1), Gamma:
G(1,6), exponential: Exp, and chi-squared with 1 degree of freedom: v21: Normal: see Eq. (18), Bonett: see Eq. (19), Johnson:
see Eq. (20) and ĉcGMX : see Eqs. (21) and (22).
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6. Application to accounts payable and receivable data sets

Populations in auditing and accounting are almost always skewed to the right: values are often
very low, but are occasionally high or very high. In this empirical application (with real data) we
use two populations composed by the accounts payable and receivable of a Portuguese company
during the year 2019. The empirical study is conducted in this way. First, we extract random
samples with different sizes: 10, 20, 30, 40, 50, 100, from the populations of accounts payable and
receivable. Then we compare the coverage probability of the confidence intervals derived in the
sections before. The empirical results confirm the superiority of these intervals, already noticed in
the Monte Carlo simulation studies.

Table 8. Length of the C. I. for the difference of arithmetic averages.

Dist. n Normal Bonett Johnson ĉcGMX Dist. n Normal Bonett Johnson ĉcGMX

U(0,1) 10 0.4848 0.5324 1.7984 0.4594 W(1,1) 10 0.7710 0.8465 1.1309 0.7308
20 0.3484 0.3651 1.2609 0.3385 20 0.5565 0.5832 0.7960 0.5407
30 0.2867 0.2958 1.0256 0.2810 30 0.4586 0.4733 0.6501 0.4497
40 0.2492 0.2552 0.8863 0.2455 40 0.3991 0.4087 0.5621 0.3932
50 0.2235 0.2279 0.7908 0.2208 50 0.3581 0.3650 0.5033 0.3538
100 0.1572 0.1587 0.5503 0.1553 100 0.2520 0.2544 0.3513 0.2490

B(3,3) 10 0.3158 0.3468 0.7915 0.2992 G(1,6) 10 0.6773 0.7436 0.7318 0.6421
20 0.2275 0.2384 0.5639 0.2210 20 0.4892 0.5126 0.5206 0.4753
30 0.1873 0.1933 0.4623 0.1836 30 0.4036 0.4165 0.4265 0.3957
40 0.1630 0.1669 0.4016 0.1606 40 0.3516 0.3600 0.3705 0.3463
50 0.1462 0.1490 0.3596 0.1444 50 0.3152 0.3213 0.3316 0.3114
100 0.1029 0.1038 0.2524 0.1016 100 0.2220 0.2241 0.2326 0.2193

LN(0,1) 10 3.1637 3.4695 2.0164 3.0051 Exp 10 1.6231 1.7814 2.8072 1.5396
20 2.3708 2.4840 1.3328 2.3046 20 1.1851 1.2419 1.7959 1.1516
30 1.9919 2.0555 1.0612 1.9535 30 0.9799 1.0112 1.4111 0.9608
40 1.7607 1.8030 0.9102 1.7346 40 0.8547 0.8753 1.2033 0.8420
50 1.5882 1.6188 0.8076 1.5692 50 0.7678 0.7826 1.0587 0.7586
100 1.1402 1.1511 0.5559 1.1265 100 0.5423 0.5474 0.7209 0.5358

B(1,10) 10 0.1361 0.1494 2.8000 0.1290 v21 10 2.2419 2.4598 9.2753 2.1277
20 0.0988 0.1035 1.7477 0.0960 20 1.6529 1.7319 4.3789 1.6063
30 0.0817 0.0843 1.3699 0.0801 30 1.3730 1.4169 3.0963 1.3463
40 0.0712 0.0729 1.1594 0.0701 40 1.1994 1.2283 2.4761 1.1816
50 0.0639 0.0652 1.0267 0.0632 50 1.0781 1.0989 2.1196 1.0652
100 0.0451 0.0455 0.6995 0.0446 100 0.7641 0.7714 1.3402 0.7549

We simulate 100,000 Monte Carlo samples of different sizes: 10, 20, 30, 40, 50 and 100 (population 1) and 15, 25, 35, 45, 55,
110 (population 2) from distributions: uniform: U(0,1), beta: B(3,3) and B(1,10), log-normal: LN(0,1), Weibull: W(1,1), Gamma:
G(1,6), exponential: Exp, and chi-squared with 1 degree of freedom: v21: Normal: see Eq. (18), Bonett: see Eq. (19), Johnson:
see Eq. (20) and ĉcGMX : see Eqs. (21) and (22).

Table 9. Descriptive statistics.

Statistics Payables Receivables

Arithmetic mean 11317.68 11472.53
Geometric mean 2472.40 3337.83
Harmonic mean 1075.43 1783.39
Standard Error 320.10 339.51
Median 1650.00 2040.00
Mode 516.60 1600.00
Standard Deviation 25344.79 25333.77
Sample Variance 642358281.99 641799744.53
Kurtosis 17.86 19.23
Skewness 3.63 3.79
Range 196919.11 195196.49
Minimum 400.53 600.22
Maximum 197319.64 195796.71
Sum 70950545.59 63879033.09
Count 6269 5568
Confidence Level(95.0%) 627.51 665.57
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Descriptive statistics are shown in Table 9. The dimension of the accounts payable and receiv-
able populations is 6269 and 5568, respectively. The distributions are right-skewed and highly lep-
tokurtic. Thus, we expect that the coverage probability of the confidence intervals proposed in
this paper should be superior when compared to the existing ones.

First we analyze the bias of the three estimators of the kurtosis by comparing the Pearson esti-
mator with the alternative estimators in Eq. (4). 100,000 random samples are selected with differ-
ent sizes for accounts payable and receivable and the average of bias per estimator is shown in
Table 10. The empirical results confirm the Monte Carlo simulation study based on several distri-
butions (see Table 1). The bias of the estimators is almost always negative and the estimator
ĉ4ð3Þ, where the central tendency is represented by the median, is the one with the smallest bias
confirming its appropriateness to estimate the kurtosis of leptokurtic and/or right-skewed empir-
ical distributions.

Next we compute confidence intervals for the variance of accounts payable and receivable
based on Eqs. (1) and (5), and in the last case the standard error of ln ðr̂2Þ is computed based on
ðseð2Þ of Eq. (6) and considering the three different estimators for kurtosis. The results are pre-
sented in Table 11. As one can see, the confidence interval assuming the normality of the

Table 10. Bias of ĉ4ð1Þ, ĉ4ð2Þ and ĉ4ð3Þ:
Payables Receivables

n ĉ4ð1Þ ĉ4ð2Þ ĉ4ð3Þ ĉ4ð1Þ ĉ4ð2Þ ĉ4ð3Þ
10 �15.866 �15.325 �10.425 �15.849 �14.571 �11.508
20 �8.419 �7.399 �3.483 �11.717 �10.711 �6.839
30 �7.628 �6.769 �2.750 �11.180 �10.315 �5.616
40 �6.532 �5.529 �1.793 �10.086 �8.021 �4.656
50 �6.235 �4.550 �1.246 �6.755 �5.702 �1.922
100 �5.550 �3.450 �0.515 �3.920 �2.549 �0.679

ĉ4ð1Þ, ĉ4ð2Þ and ĉ4ð3Þ are the estimators for the standardized fourth central moment; see Eqs. (3) and (4). The bias is com-
puted as ĉ4ðjÞ � c4ðjÞ, where c4ðjÞ is the true value of kurtosis.

Table 11. Estimated 95% probabilities of C. I. for the population variance.

Payables Receivables

n Normal ĉ4ð1Þ ĉ4ð2Þ ĉ4ð3Þ Normal ĉ4ð1Þ ĉ4ð2Þ ĉ4ð3Þ
10 0.434 0.619 0.687 0.762 0.442 0.612 0.672 0.735
20 0.370 0.737 0.770 0.833 0.390 0.734 0.771 0.831
30 0.333 0.799 0.820 0.875 0.352 0.782 0.806 0.866
40 0.318 0.834 0.852 0.903 0.337 0.814 0.833 0.886
50 0.310 0.854 0.868 0.919 0.326 0.840 0.853 0.902
100 0.286 0.906 0.918 0.952 0.294 0.900 0.913 0.946

The column “Normal” refers to the coverage probability of the confidence interval assuming the normality of payables and
receivables; see Eq. (1). ĉ4ð1Þ, ĉ4ð2Þ and ĉ4ð3Þ represent the coverage probabilities of the confidence intervals resulting from
Eq. (5) considering the three estimators for the fourth central moment l4 in se(2), the standard error of the ln ðr̂2Þ:

Table 12. Estimated 95% probabilities of C. I. for the ratio of populations variance.

n Normal F1 ĉ4ð1Þ ĉ4ð2Þ ĉ4ð3Þ
10 0.398 0.762 0.756 0.913 0.89335
20 0.419 0.855 0.847 0.886 0.93107
30 0.439 0.888 0.898 0.906 0.95407
40 0.451 0.903 0.924 0.926 0.96598
50 0.459 0.913 0.941 0.942 0.97507
100 0.481 0.934 0.974 0.976 0.99048

ĉ4ð1Þ, ĉ4ð2Þ and ĉ4ð3Þ are the estimators for the standardized fourth central moment; see Eqs. (3) and (4). The confidence
intervals are computed based on Eqs. (7) (8) and (9). Column “Normal” refers to the confidence interval assuming normality;
see Eq. (7). F1 refers to the confidence interval resulting from Eq. (7) but with the adjustment in degrees of freedom sug-
gested by Shoemaker (2003).
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populations (“Normal”) is very liberal and its coverage probability does not converge to the 95%
confidence level when the sample size increases. The confidence intervals resulting from Eq. (5)
seem slightly liberal for small to moderate samples. However, when the sample size increases to
100, the coverage probability of the confidence interval resulting from se(2), with ĉ4ð3Þ as the
estimator of kurtosis, is very close to the nominal confidence level. Thus, the empirical results
support the Monte Carlo simulation study (see Table 3) and highlights the superiority of (5)
when compared to (1) in case of leptokurtic distributions.

The next step is to compute the confidence interval for the ratio of two populations variance.
The results are shown in Table 12. Due to the asymmetry and excess of kurtosis of the accounts
payable and receivable distributions, the coverage probability of the confidence interval assuming
the normality (column “Normal”) is lower and very distant from the nominal confidence level.
The coverage probability of confidence intervals resulting from F1, an F distribution with
Shoemaker (2003) degrees of freedom adjustment, is close to k ¼ 1� a for big sample sizes. The
confidence intervals resulting from (8) are preferable for small to moderate sample sizes. The
coverage probability of the confidence interval resulting from (8) with ĉ4ð3Þ, where the estima-
tion of the fourth central moment l4 is based on the median, is very close to the nominal confi-
dence level. Thus, it seems more appropriate in case of moderate sample sizes. The confidence
interval resulting from (8) and based on ĉ4ð2Þ seems more appropriate for small sample sizes.

Next we compute and compare the coverage probability of confidence intervals for the popula-
tion arithmetic average of accounts payable and receivable (see Table 13). The results confirm the
conclusions of the Monte Carlo simulations studies of Sec. 4. By log-transforming the original
data, computing a confidence interval for the geometric average and then computing a confidence
interval for the arithmetic average of original data based on Eqs. (13) (14) and (15) results in a
coverage probability that is very close to the nominal confidence level, no matter the sample size
(except when n¼ 10). Thus, the empirical result, based on real data, reinforces the recommenda-
tion to use this procedure to compute confidence intervals for the arithmetic average in case of
right-skewed and/or leptokurtic distributions.

Finally we analyze the coverage probability of the confidence intervals for the ratio of two
arithmetic averages of accounts payable and receivable (see Table 14). The confidence intervals,
assuming the normality of the original values of accounts payable and receivable and based on

Table 14. Estimated 95% probabilities of C. I. for the ratio of arithmetic averages.

n Normal Bonett Johnson ĉcGMX

10 0.982 0.993 0.964 0.947
20 0.968 0.978 0.953 0.948
30 0.960 0.968 0.949 0.949
40 0.957 0.963 0.948 0.950
50 0.955 0.959 0.948 0.950
100 0.953 0.955 0.950 0.951

Normal: see Eq. (18), Bonett: see Eq. (19), Johnson: see Eq. (20) and ĉcGMX : see Eqs. (21) and (22).

Table 13. Estimated 95% probabilities of C. I. for the arithmetic average.

Payables Receivables

n Normal Bonett Johnson ĉcGMX Normal Bonett Johnson ĉcGMX

10 0.725 0.743 0.731 0.906 0.707 0.725 0.712 0.906
20 0.816 0.825 0.822 0.931 0.807 0.815 0.813 0.930
30 0.857 0.863 0.863 0.937 0.849 0.855 0.855 0.938
40 0.881 0.886 0.887 0.941 0.872 0.877 0.878 0.942
50 0.893 0.897 0.898 0.942 0.889 0.893 0.894 0.944
100 0.923 0.925 0.927 0.948 0.919 0.922 0.924 0.949

Normal: �X6tn�1, a=2
r̂ffiffi
n

p : Bonett: �X6tn�1, a=2
r̂Bffiffi
n

p , where r̂2
B ¼ exp ½ln ðcr̂2Þ�, see Eq. (5). Johnson: �X þ l̂3

6r̂2n

� �
6tn�1, a=2

r̂ffiffi
n

p , see
Eqs. (16) and (17). ĉcGMX : ðĉLL; ĉULÞ, see Eq. (15).
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the corrections proposed by Bonett (2006) and Johnson (1978), are very conservative for small
samples size. For moderate to large samples size the coverage probability is approximately the
same no matter is the confidence interval. After all, despite the difference being small, the confi-
dence interval that we propose based on log-transformation (see Eqs. (21) and (22)) produces the
closer coverage probability to the nominal confidence level. Thus, the empirical results confirm
the Monte carlo study pointing for the usefulness of confidence interval resulting from Eqs. (21)
and (22) in case of right-skewed and/or leptokurtic distributions.

7. Conclusions

In this paper we propose new confidence intervals for the population mean and variance, the
ratio of two populations variance and the difference and ratio of the arithmetic averages of two
populations with nonnormal distribution.

To compare the coverage probability of different confidence intervals, several Monte Carlo
simulation studies have been conducted. We simulate 100,000 samples of different sizes: 10, 20,
30, 40, 50 and 100 from various theoretical distributions: standard normal, uniform, beta, logistic,
Laplace, Student’s t, log-normal, gamma, Weibull, exponential and chi-squared. The simulation
routines have been programmed in R.

A new estimator of kurtosis based on median has been proposed, and we compare it with
Pearson and another estimator based on trimmed mean suggested by Bonett (2006). We conclude
that the bias of the three estimators is negative in leptokurtic distributions, understating the true
value of kurtosis. The Pearson estimator, the most popular, has the largest negative bias. From
the two estimators based on trimmed mean and median, the one based on median has, on aver-
age, the smallest negative bias. Thus, it seems the most appropriate to estimate the kurtosis of
leptokurtic distributions.

We derive a new confidence interval for the variance of population, based on the method pro-
posed by Bonett (2006) and considering the new estimator for kurtosis. The estimated coverage
probabilities are very close to the nominal confidence level pointing for its superiority when com-
pared to the existing methods.

We generalize this method for one single population variance to the ratio of two populations
variance and we compare the resulting confidence intervals with the ones based on F� Snedecor
distribution with the adjustment in degrees of freedom suggested by Shoemaker (2003). The
results show that all the confidence intervals are conservative in platykurtic distributions. For
moderate leptokurtic distributions the coverage probability of confidence intervals resulting from
the adjustment is closer to the confidence level. In the extreme leptokurtic distribution ðv21Þ only
the coverage probability of the confidence intervals resulting from the new method (based on the
median to estimate the fourth central moment) is close to the confidence level.

A new confidence interval is also proposed for the arithmetic average of the original data from a
reverse-transformed confidence interval for the arithmetic average of the log transformation data.
Thus, we have to reverse the confidence interval on logs to a confidence interval in the original scale.
When right-skewed distributions are considered, computing a confidence interval for the geometric
average and then computing a confidence interval for the arithmetic average results in a coverage
probability that is very close to the nominal confidence level, no matter the sample size.

Confidence intervals for the difference and the ratio of two arithmetic averages are also
derived. The simulation results favor the new method only in terms of length. The confidence
intervals give approximately the same coverage and they all are very close to the nominal confi-
dence level.

Finally, we analyze two populations of accounts payable and receivable of a Portuguese com-
pany for the year 2019. The empirical results confirm the Monte Carlo simulation studies, high-
lighting the superiority of the new proposed methods.
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